首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Dynamic Learning From Adaptive Neural Control of Robot Manipulators With Prescribed Performance
【24h】

Dynamic Learning From Adaptive Neural Control of Robot Manipulators With Prescribed Performance

机译:具有规定性能的机器人自适应神经控制动态学习

获取原文
获取原文并翻译 | 示例

摘要

This paper presents dynamic learning from adaptive neural control (ANC) with prescribed tracking error performance for an n -link robot manipulator subjected to unknown system dynamics and external disturbances. To achieve the prescribed performance, a performance function is introduced to describe the performance restrictions on tracking errors, and then specific performance requirements are served as a priori condition of tracking control design. By an error transformation method, the constrained tracking control problem of the original robot manipulator is transformed into the stabilization problem of an unconstrained augmented system. Then, a novel ANC scheme is proposed for the unconstrained system by combining a filter tracking error with radial basis function (RBF) neural network (NN) approximator, and all the signals in the closed-loop system are semi-globally uniformly ultimately bounded. The external disturbances might make it difficult to achieve the accurate convergence of NN weight estimates. To overcome this difficulty, an appropriate state transformation is introduced to transform the closed-loop system into a linear time-varying system with small perturbed terms. Under partial persistent excitation condition of RBF NNs, the convergence of NN weight estimates is guaranteed, and then the experienced knowledge on the unknown robot manipulator dynamics can be stored with NN constant weights. Using the experienced knowledge, a static neural learning control is proposed to improve the system performances without time-consuming online parameter adjustment process, and the proposed learning control can also guarantee the prescribed transient and steady-state tracking control performance. Simulation results demonstrate the effectiveness of the proposed method.
机译:本文针对具有未知系统动力学和外部干扰的n链接机器人机械手,提出了具有自适应跟踪控制性能的自适应神经控制(ANC)的动态学习方法。为了达到规定的性能,引入性能函数来描述跟踪误差的性能限制,然后将特定的性能要求作为跟踪控制设计的先决条件。通过误差变换方法,将原始机器人操纵器的约束跟踪控制问题转化为无约束增强系统的稳定问题。然后,通过将滤波器跟踪误差与径向基函数(RBF)神经网络(NN)逼近器相结合,为无约束系统提出了一种新颖的ANC方案,并且该闭环系统中的所有信号最终都是半全局一致的。外部干扰可能使难以实现NN权重估计值的精确收敛。为了克服这个困难,引入了适当的状态变换,以将闭环系统转换为具有小扰动项的线性时变系统。在RBF神经网络的部分持续激励条件下,可以保证NN权重估计的收敛性,然后可以使用NN恒定权重存储未知机器人操纵器动力学的经验知识。利用经验丰富的知识,提出了一种静态神经学习控制来提高系统性能,而无需耗时的在线参数调整过程,并且所提出的学习控制还可以保证规定的瞬态和稳态跟踪控制性能。仿真结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号