...
首页> 外文期刊>Microelectronics reliability >Investigation and simulation on the dynamic shock response performance of packaged high-g MEMS accelerometer versus the impurity concentration of the piezoresistor
【24h】

Investigation and simulation on the dynamic shock response performance of packaged high-g MEMS accelerometer versus the impurity concentration of the piezoresistor

机译:封装高克MEMS加速度计动态冲击响应性能与压敏电阻杂质浓度关系的研究与仿真

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To enhance the stability of packaged high-g MEMS accelerometers with double cantilevers positioned asymmetrically, the dynamic shock responses of components versus impurity concentration of piezore-sistors at various working temperatures have been probed by using Finite Element Method (FEM). Results indicate that the dynamic output responses of component are actually the superposition of the forced vibrations with dynamic shock and those of cantilevers in their eigenfrequency. The dynamic responses of components are sensitive to the working temperature. With the increase of working temperature, the inherent frequency vibrations of the cantilevers are depressed gradually. Moreover, the larger the difference between the working temperature and reference temperature, the more obvious the impurity effect of piezoresistors is. The difference between the peak output voltage of response under 1 × 10~(18) cm~(-3) and that under 1 × 10~(21) cm~(-3) varies greatly from -2.2146 mV at T= 0 ℃ to 8.6609 mV at T= 100 ℃, of course, is partly due to the characteristic variation of damping media under various working temperatures. Therefore, to improve the stability of component and further weaken the impurity concentration effect and the temperature effect of piezoresistors on the performance of components, it is necessary to increase the impurity concentration of piezoresistors and keep the components working at relatively lower temperature only if the electro-performance of component is satisfied.
机译:为了提高具有非对称定位的双悬臂的封装高g MEMS加速度计的稳定性,已经通过使用有限元方法(FEM)探索了组件在各种工作温度下的动态冲击响应与压电电阻的杂质浓度。结果表明,组件的动态输出响应实际上是带有动态冲击的强迫振动与本征频率的悬臂振动的叠加。组件的动态响应对工作温度敏感。随着工作温度的升高,悬臂的固有频率振动逐渐减小。此外,工作温度与参考温度之间的差异越大,压敏电阻的杂质效应越明显。在T = 0℃时,响应峰值输出电压在1×10〜(18)cm〜(-3)下和1×10〜(21)cm〜(-3)下的最大差异为-2.2146 mV。当然,在T = 100℃下达到8.6609 mV的部分原因是阻尼介质在各种工作温度下的特性变化。因此,为了提高元件的稳定性并进一步减弱压敏电阻的杂质浓度效应和温度对元件性能的影响,有必要增加压敏电阻的杂质浓度并使元件在较低的温度下工作。 -满足组件的性能。

著录项

  • 来源
    《Microelectronics reliability》 |2009年第5期|510-516|共7页
  • 作者单位

    Key Laboratory of Analysis and Detection Technology for Food Safety of the Ministry of Education, Fuzhou University, Fuzhou 350002, PR China Department of Electronics Science and Technology, Fuzhou University, Fuzhou 350108, PR China;

    Department of Electronics Science and Technology, Fuzhou University, Fuzhou 350108, PR China;

    Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China;

    Key Laboratory of Analysis and Detection Technology for Food Safety of the Ministry of Education, Fuzhou University, Fuzhou 350002, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号