...
首页> 外文期刊>Journal of Microelectromechanical Systems >Near-Contact Gas Damping and Dynamic Response of High-g MEMS Accelerometer Beams
【24h】

Near-Contact Gas Damping and Dynamic Response of High-g MEMS Accelerometer Beams

机译:高g MEMS加速度计梁的近接触气体阻尼和动态响应

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces and experimentally validates a new model for near-contact gas damping of microbeams. The model is formulated based on numerical simulations of rarefied gas dynamics using the Boltzmann Ellipsoidal Statistical Bhatnagar-Gross-Krook (ES-BGK) equation. The result is compared with existing models by simulating the motion of beams under high-g acceleration. To experimentally validate the damping models, single crystal silicon MEMS g-switches with cantilever microbeams of various lengths were utilized. The experimental measurements of beam dynamics under peak accelerations of approximately 50,000 g and acceleration ramp rates from 600 to 3,000 ${rm g}/mu{rm s}$ are compared with simulations. Additionally, the damping coefficients are extracted from existing vibrational mode data, and the resulting values are compared to the various models. The new near-contact model was found to predict contact and release times within a root-mean-square deviation from experiment below 9 $mu{rm s}~(<20%)$ and 7 $mu{rm s}~(<5%)$ for contact and release events, respectively. The damping values for the vibrational modes away from contact were predicted within 33% error, showing a more consistent predictive capability than provided by earlier models. $hfill{[2012hbox{-}0242]}$
机译:本文介绍并通过实验验证了一种新的微束近接触气体阻尼模型。该模型基于稀薄气体动力学的数值模拟,使用Boltzmann椭球统计Bhatnagar-Gross-Krook(ES-BGK)方程来制定。通过模拟高g加速度下光束的运动,将结果与现有模型进行比较。为了通过实验验证阻尼模型,使用了具有各种长度的悬臂微束的单晶硅MEMS g开关。在大约50,000 g的峰值加速度和600至3,000的加速斜率下,光束动力学的实验测量<公式> = {rm g} / mu {rm s} $ < / tex> 与模拟进行了比较。另外,从现有的振动模式数据中提取阻尼系数,并将结果值与各种模型进行比较。发现新的近接触模型可预测低于9的实验的均方根偏差内的接触和释放时间。<公式> $ mu {rm s}〜( <20%)$ 和7个 $ mu {rm s}〜(<5%)$ 分别用于接触和释放事件。预测远离接触的振动模式的阻尼值误差在33%以内,与以前的模型相比,具有更一致的预测能力。 $ hfill {[2012hbox {-} 0242]} $

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号