首页> 外文期刊>Microelectronic Engineering >Geometry of nanopore devices fabricated by electron beam lithography: Simulations and experimental comparisons
【24h】

Geometry of nanopore devices fabricated by electron beam lithography: Simulations and experimental comparisons

机译:电子束光刻技术制备的纳米孔器件的几何:模拟和实验比较

获取原文
获取原文并翻译 | 示例

摘要

Fabrication of solid-state nanopore sensors for individual biomolecule analysis is a growing topic of interest. A number of recent studies demonstrate that engineered nanopore devices (ENDs) can be fabricated by electron beam lithography (EBL) with high density (on the order of 10 devices per cm~2). The internal pore geometry of ENDs is a critical characteristic of the devices, and often obtained by some combination of SEM, TEM, AFM, and conductance measurements. However, experimental data alone is not sufficient to understand the nanopore geometry under a broad set of fabrication conditions. It is necessary to also examine the physical basis underlying the EBL-based fabrication of ENDs. In this work, the internal pore geometry of ENDs is calculated from electron energy distributions in EBL while investigating the effects of dose, operating blur, substrate, and dosing pattern. The photoresist is ZEP-520 on silicon or silicon nitride substrates. It is found that higher beam blur and lower dose cause a greater degree of pore tapering, with the most prominent tapering observed in sub-10nm pores. Nanopores in silicon nitride tapered more than those in silicon. The results also demonstrate that a combination of blur and dose can be chosen to achieve a target tapering angle and pore size at a given depth in the substrate. Because the pore tapering angle is non-uniform, the ICP (inductively coupled plasma) etch depth may also be used to tune pore size and geometry following EBL The resist sensitivity is shown to increase with beam blur for pore sizes larger than 10 nm. By comparing to our experimental data, it is found that beam intensity measured by the EBL instrument may not translate to the operating blur, as is often assumed in EBL simulations. Secondary electrons were found to be responsible for pore tapering and beam broadening in the resist.
机译:用于单个生物分子分析的固态纳米孔传感器的制造是一个日益受到关注的话题。大量的最新研究表明,可以通过电子束光刻(EBL)高密度(每厘米2到10个器件的数量级)来制造工程化的纳米孔器件(END)。 ENDs的内部孔几何形状是设备的关键特性,通常通过SEM,TEM,AFM和电导率测量的组合获得。然而,仅实验数据不足以理解在广泛的制造条件下的纳米孔几何形状。还必须检查基于EBL的END制造基础的物理基础。在这项工作中,根据EBL中的电子能量分布计算ENDs的内部孔几何形状,同时研究剂量,操作模糊,底物和剂量模式的影响。光致抗蚀剂是在硅或氮化硅衬底上的ZEP-520。发现较高的光束模糊度和较低的剂量会导致较大程度的细孔逐渐变细,在低于10nm的细孔中观察到的细度最大。氮化硅中的纳米孔比硅中的纳米孔逐渐变细。结果还表明,可以选择模糊和剂量的组合,以在基材中给定深度处实现目标锥角和孔径。由于孔的锥角不均匀,因此在EBL之后,也可以使用ICP(感应耦合等离子体)蚀刻深度来调整孔径和几何形状。对于大于10 nm的孔径,抗蚀剂灵敏度随光束模糊而增加。通过与我们的实验数据进行比较,发现EBL仪器测量的光束强度可能不会转换为工作模糊,这在EBL仿真中通常会假设。发现二次电子是导致抗蚀剂中的孔逐渐变细和电子束展宽的原因。

著录项

  • 来源
    《Microelectronic Engineering》 |2013年第12期|149-156|共8页
  • 作者

    Amir G. Ahmadi; Sankar Nair;

  • 作者单位

    School of Chemical & Biomolecular Engineering. Georgia Institute of Technology, 311, Ferst Drive, Atlanta, GA 30332-0100, USA;

    School of Chemical & Biomolecular Engineering. Georgia Institute of Technology, 311, Ferst Drive, Atlanta, GA 30332-0100, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanopore; Simulation; Electron beam lithography; Penelope; Nanotechnology; Monte Carlo;

    机译:纳米孔;模拟;电子束光刻;佩内洛普纳米技术;蒙特卡洛;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号