首页> 外文期刊>Mathematical Problems in Engineering >Design of Optimal Hybrid Position/Force Controller for a Robot Manipulator Using Neural Networks
【24h】

Design of Optimal Hybrid Position/Force Controller for a Robot Manipulator Using Neural Networks

机译:基于神经网络的机器人机械手最优混合位置/力控制器设计

获取原文
获取原文并翻译 | 示例

摘要

The application of quadratic optimization and sliding-mode approach is considered for hybrid position and force control of a robot manipulator. The dynamic model of the manipulator is transformed into a state-space model to contain two sets of state variables, where one describes the constrained motion and the other describes the unconstrained motion. The optimal feedback control law is derived solving matrix differential Riccati equation, which is obtained using Hamilton Jacobi Bellman optimization. The optimal feedback control law is shown to be globally exponentially stable using Lyapunov function approach. The dynamic model uncertainties are compensated with a feedforward neural network. The neural network requires no preliminary offline training and is trained with online weight tuning algorithms that guarantee small errors and bounded control signals. The application of the derived control law is demonstrated through simulation with a 4-DOF robot manipulator to track an elliptical planar constrained surface while applying the desired force on the surface.
机译:考虑了二次优化和滑模方法在机器人操纵器混合位置和力控制中的应用。机械手的动态模型被转换为状态空间模型,以包含两组状态变量,其中一组描述受约束的运动,另一组描述无约束的运动。通过求解矩阵微分Riccati方程,推导了最优反馈控制律,该方程是利用Hamilton Jacobi Bellman优化获得的。使用李雅普诺夫函数方法,最优反馈控制律被证明是全局指数稳定的。动态模型的不确定性由前馈神经网络补偿。该神经网络不需要任何初步的离线训练,并且可以通过在线权重调整算法进行训练,以保证较小的误差和有限的控制信号。通过使用4-DOF机器人操纵器进行仿真来演示推导控制律的应用,该机器人跟踪椭圆形平面约束表面,同时在表面上施加所需的力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号