首页> 外文期刊>Machine Vision and Applications >Robust multi-lane detection and tracking using adaptive threshold and lane classification
【24h】

Robust multi-lane detection and tracking using adaptive threshold and lane classification

机译:使用自适应阈值和车道分类的强大多车道检测和跟踪

获取原文
获取原文并翻译 | 示例

摘要

Many global automotive companies have been putting efforts to reduce traffic accidents by developing advanced driver assistance system (ADAS) as well as autonomous vehicles. Lane detection is essential for both autonomous driving and ADAS because the vehicle must follow the lane. However, existing lane detection algorithms have been struggling in achieving robust performance under real-world road conditions where poor road markings, surrounding obstacles, and guardrails are present. Therefore, in this paper, we propose a multi-lane detection algorithm that is robust to the challenging road conditions. To solve the above problems, we introduce three key technologies. First, an adaptive threshold is applied to extract strong lane features from images with obstacles and barely visible lanes. Next, since erroneous lane features can be extracted, an improved RANdom SAmple Consensus algorithm is introduced by using the feedback from lane edge angles and the curvature of lane history to prevent false lane detection. Finally, the lane detection performance is greatly improved by selecting only the lanes that are verified through the lane classification algorithm. The proposed algorithm is evaluated on our dataset that captures challenging road conditions. The proposed method performs better than the state-of-the-art method, showing 3% higher True Positive Rate and 2% lower False Positive Rate performance.
机译:许多全球汽车公司一直在通过开发高级驾驶员辅助系统(ADAS)和自动驾驶汽车来减少交通事故。车道检测对于自动驾驶和ADAS都是必不可少的,因为车辆必须遵循车道。然而,现有的车道检测算法一直在努力在现实的道路条件下实现强大的性能,在现实的道路条件下存在不良的道路标记,周围的障碍物和护栏。因此,在本文中,我们提出了一种对恶劣路况具有鲁棒性的多车道检测算法。为了解决上述问题,我们介绍了三种关键技术。首先,应用自适应阈值从具有障碍物和几乎看不见的车道的图像中提取强车道特征。接下来,由于可以提取错误的车道特征,因此通过使用车道边缘角度和车道历史曲率的反馈来引入改进的RANdom SAmple Consensus算法,以防止错误的车道检测。最后,通过仅选择通过车道分类算法验证的车道,可以大大提高车道检测性能。所提出的算法在我们的数据集上进行了评估,该数据集捕获了具有挑战性的路况。所提出的方法比最先进的方法具有更好的性能,显示出3%的真实肯定率和2%的错误肯定率性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号