首页> 外文期刊>Learning Technologies, IEEE Transactions on >Where is the Learning in Learning Analytics? A Systematic Literature Review on the Operationalization of Learning-Related Constructs in the Evaluation of Learning Analytics Interventions
【24h】

Where is the Learning in Learning Analytics? A Systematic Literature Review on the Operationalization of Learning-Related Constructs in the Evaluation of Learning Analytics Interventions

机译:学习分析在哪里?学习分析干预评估中学习与学习与学习建设的系统文献综述

获取原文
获取原文并翻译 | 示例

摘要

Learning technologies enable interventions in the learning process aiming to improve learning. Learning analytics provides such interventions based on analysis of learner data, which are believed to have beneficial effects on both learning and the learning environment. Literature reporting on the effects of learning analytics interventions on learning allows us to assess in what way learning analytics improves learning. No standard set of operational definitions for learning affected by learning analytics interventions is available. We performed a systematic literature review of 1932 search hits, which yielded 62 key studies. We analyzed how affected learning was operationalized in these key studies and classified operational definitions into three categories: 1) learning environment; 2) learning process; and 3) learning outcome. A deepening analysis yielded a refined classification scheme with 11 subcategories. Most of the analyzed studies relate to either learning outcome or learning process. Only nine of the key studies relate to more than one category. Given the complex nature of applying learning analytics interventions in practice, measuring the effects on a wider spectrum of aspects can give more insight into the workings of learning analytics interventions on the different actors, processes, and outcomes involved. Based on the results of our review, we recommend making deliberate decisions on the (multiple) aspects of learning one tries to improve by applying learning analytics. Our refined classification with examples of operational definitions may help both academics and practitioners doing so, as it allows for a more structured, grounded, and comparable positioning of learning analytics benefits.
机译:学习技术能够在旨在改善学习的学习过程中的干预措施。学习分析基于对学习者数据的分析提供了这种干预措施,这些干预措施被认为对学习和学习环境具有有益的影响。关于学习分析干预措施对学习的影响的文献报告允许我们以学习分析改善学习的方式评估。没有提供由学习分析干预影响的学习的标准操作定义。我们对1932年搜索命中进行了系统的文献综述,产生了62项重点研究。我们分析了受影响的学习在这些关键研究中如何运作,并将运营定义分为三类:1)学习环境; 2)学习过程; 3)学习结果。深化分析产生了一种精致的分类方案,具有11个子类别。大多数分析的研究都涉及学习结果或学习过程。只有九项重点研究与多个类别有关。鉴于在实践中应用学习分析干预的复杂性质,测量对更广泛的方面的影响,可以更有深入了解在不同行为,流程和结果上学习分析干预的工作。根据我们审查的结果,我们建议通过应用学习分析来提高学习的(多个)方面的刻意决定,以通过应用学习分析来改善。我们的精致分类与运营定义的例子可能有助于学术和从业者这样做,因为它允许更具结构化,接地和比较的学习分析益处的定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号