首页> 外文期刊>Journal of Optimization Theory and Applications >Robust Duality for Fractional Programming Problems with Constraint-Wise Data Uncertainty
【24h】

Robust Duality for Fractional Programming Problems with Constraint-Wise Data Uncertainty

机译:具有约束明智数据不确定性的分数规划问题的鲁棒对偶

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we examine duality for fractional programming problems in the face of data uncertainty within the framework of robust optimization. We establish strong duality between the robust counterpart of an uncertain convex–concave fractional program and the optimistic counterpart of its conventional Wolfe dual program with uncertain parameters. For linear fractional programming problems with constraint-wise interval uncertainty, we show that the dual of the robust counterpart is the optimistic counterpart in the sense that they are equivalent. Our results show that a worst-case solution of an uncertain fractional program (i.e., a solution of its robust counterpart) can be obtained by solving a single deterministic dual program. In the case of a linear fractional programming problem with interval uncertainty, such solutions can be found by solving a simple linear program.
机译:在本文中,我们在稳健优化的框架下,面对数据不确定性,研究了分数规划问题的对偶性。我们在不确定的凸凹分数程序的鲁棒对应物与常规的带有不确定参数的Wolfe对偶程序的乐观对应物之间建立强对偶性。对于具有约束方式间隔不确定性的线性分数规划问题,我们表明健壮对等的对偶在它们相等的意义上是乐观对等。我们的结果表明,可以通过求解单个确定性对偶程序来获得不确定分数程序的最坏情况解决方案(即其鲁棒对应项的解决方案)。在具有区间不确定性的线性分数规划问题的情况下,可以通过求解简单的线性规划来找到此类解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号