首页> 美国卫生研究院文献>Springer Open Choice >When are static and adjustable robust optimization problems with constraint-wise uncertainty equivalent?
【2h】

When are static and adjustable robust optimization problems with constraint-wise uncertainty equivalent?

机译:何时具有约束约束不确定性的静态和可调鲁棒优化问题?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Adjustable robust optimization (ARO) generally produces better worst-case solutions than static robust optimization (RO). However, ARO is computationally more difficult than RO. In this paper, we provide conditions under which the worst-case objective values of ARO and RO problems are equal. We prove that when the uncertainty is constraint-wise, the problem is convex with respect to the adjustable variables and concave with respect to the uncertain parameters, the adjustable variables lie in a convex and compact set and the uncertainty set is convex and compact, then robust solutions are also optimal for the corresponding ARO problem. Furthermore, we prove that if some of the uncertain parameters are constraint-wise and the rest are not, then under a similar set of assumptions there is an optimal decision rule for the ARO problem that does not depend on the constraint-wise uncertain parameters. Also, we show for a class of problems that using affine decision rules that depend on all of the uncertain parameters yields the same optimal objective value as when the rules depend solely on the non-constraint-wise uncertain parameters. Finally, we illustrate the usefulness of these results by applying them to convex quadratic and conic quadratic problems.Electronic supplementary materialThe online version of this article (doi:10.1007/s10107-017-1166-z) contains supplementary material, which is available to authorized users.
机译:可调健壮优化(ARO)通常比静态健壮优化(RO)产生更好的最坏情况解决方案。但是,ARO在计算上比RO困难。在本文中,我们提供了ARO和RO问题的最坏情况目标值相等的条件。我们证明,当不确定性是约束方式时,问题对于可调整变量是凸的,而对于不确定参数则是凹的,可调整变量位于凸和紧集中,并且不确定性集是凸和紧,然后对于相应的ARO问题,可靠的解决方案也是最佳的。此外,我们证明,如果某些不确定参数是按约束方式确定的,而其余的不是,则在相似的一组假设下,存在一个不依赖约束方式的不确定参数的ARO问题的最佳决策规则。此外,对于一类问题,我们表明,使用依赖于所有不确定参数的仿射决策规则所产生的最佳目标值与仅依赖于非约束不确定参数的规则相同。最后,我们通过将这些结果应用于凸二次和圆锥二次问题来说明这些结果的有用性。电子补充材料本文的在线版本(doi:10.1007 / s10107-017-1166-z)包含补充材料,可以授权使用用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号