首页> 外文期刊>Journal of logic, language and information >Set Venn Diagrams Applied to Inclusions and Non-inclusions
【24h】

Set Venn Diagrams Applied to Inclusions and Non-inclusions

机译:设置维恩图应用于包含和非包含

获取原文
获取原文并翻译 | 示例

摘要

In this work, formulas are inclusions t_1 is contained in t_2 and non-inclusions t_1 (is contained in) t_2 between Boolean terms t_1 and t_2. We present a set of rules through which one can transform a term t in a diagram Δt and, consequently, each inclusion t_1 is contained in t_2 (non-inclusion t_1 (is contained in) t_2) in an inclusion Δt_1 is contained in Δt_2 (non-inclusion Δt_1 (is contained in) Δt_2) between diagrams. Also, by applying the rules just to the diagrams we are able to solve the problem of verifying if a formula φ is consequence of a, possibly empty, set Σ of formulas taken as hypotheses. Our system has a diagrammatic language based on Venn diagrams that are read as sets, and not as statements about sets, as usual. We present syntax and semantics of the diagrammatic language, define a set of rules for proving consequence, and prove that our set of rules is strongly sound and complete in the following sense: given a set Σ ∪ φ of formulas, φ is a consequence of Σ iff there is a proof of this fact that is based only on the rules of the system and involves only diagrams associated to φ and to the members of Σ.
机译:在这项工作中,公式是布尔项t_1和t_2之间的包含t_1包含在t_2中,非包含t_1(包含在t_2中)。我们提出了一组规则,通过该规则可以变换图Δt中的项t,因此每个包含t_1包含在t_2中(非包含t_1(包含在t_2中))包含在包含物tt_1中包含在Δt_2(图之间不包含Δt_1(包含在Δt_2中)。而且,通过仅将规则应用于图,我们就能解决验证公式φ是否为假设的公式集Σ(可能为空)的结果的问题。我们的系统具有基于维恩图的图解语言,该语言通常像集合一样读取,而不是关于集合的语句。我们给出了图解语言的语法和语义,定义了一组证明结果的规则,并证明我们的规则在以下意义上具有较强的健全性和完整性:给定一组公式的∑∪φ,φ是以下公式的结果如果存在这一事实的证明,则仅基于系统规则,并且仅涉及与φ和Σ成员相关的图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号