首页> 外文期刊>Journal of Logic, Language and Information >Set Venn Diagrams Applied to Inclusions and Non-inclusions
【24h】

Set Venn Diagrams Applied to Inclusions and Non-inclusions

机译:设置维恩图应用于包含和非包含

获取原文
获取原文并翻译 | 示例

摘要

In this work, formulas are inclusions (t_1 subseteq t_2) and non-inclusions (t_1not subseteq t_2) between Boolean terms (t_1) and (t_2). We present a set of rules through which one can transform a term t in a diagram (Delta t) and, consequently, each inclusion (t_1 subseteq t_2) (non-inclusion (t_1not subseteq t_2)) in an inclusion (varDelta t_1 subseteq varDelta t_2) (non-inclusion (varDelta t_1 not subseteq varDelta t_2)) between diagrams. Also, by applying the rules just to the diagrams we are able to solve the problem of verifying if a formula (varphi ) is consequence of a, possibly empty, set (varSigma ) of formulas taken as hypotheses. Our system has a diagrammatic language based on Venn diagrams that are read as sets, and not as statements about sets, as usual. We present syntax and semantics of the diagrammatic language, define a set of rules for proving consequence, and prove that our set of rules is strongly sound and complete in the following sense: given a set (varSigma cup varphi ) of formulas, (varphi ) is a consequence of (varSigma ) iff there is a proof of this fact that is based only on the rules of the system and involves only diagrams associated to (varphi ) and to the members of (varSigma ).
机译:在这项工作中,公式是布尔项(t_1)和(t_2)之间的包含项(t_1subseteq t_2)和非包含项(t_1notsubseteq t_2)。我们提出了一组规则,通过这些规则,人们可以变换图表中的项t(Delta t),因此可以变换包含项(varDelta t_1subseteq varDelta图表之间的t_2)(不包含(varDelta t_1而不是subseteq varDelta t_2))。另外,通过仅将规则应用于图,我们就能解决验证公式(varphi)是否为假设的一组可能为空的公式(varSigma)的结果的问题。我们的系统具有基于维恩图的图解语言,该语言通常像集合一样读取,而不是关于集合的语句。我们提供图解语言的语法和语义,定义一组证明结果的规则,并证明我们的规则在以下意义上具有较强的健全性和完整性:给定一组公式(varSigma cup varphi),(varphi)是(varSigma)的结果,如果有一个事实证明仅基于系统规则,并且仅涉及与(varphi)和(varSigma)成员相关的图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号