首页> 外文期刊>International journal of humanoid robotics >Synchronous and Asynchronous Application of a Filtering Method for Underwater Robot Localization
【24h】

Synchronous and Asynchronous Application of a Filtering Method for Underwater Robot Localization

机译:水下机器人定位滤波方法的同步与异步应用

获取原文
获取原文并翻译 | 示例

摘要

This paper reports a method that fuses multiple sensor measurements for location estimation of an underwater robot. Synchronous and asynchronous (AS) implementation of the method are also proposed. Extended Kalman filter (EKF) is used to fuse four types of measurements: linear velocity by Doppler velocity log (DVL), angular velocity by gyroscope, ranges to acoustic beacons, and depth. The EKF approach is implemented in three ways to deal with asynchrony in measurements in correction step. The three implementation methods are synchronous collective (SC), synchronous individual (SI), and AS application. These methods are verified and compared through simulation and test tank experiments. The test reveals that the application methods need to be selected depending on the measurement properties: dependency between the measurements and degree of asynchrony. The distinctive features proposed in this study are three application methods together with derivation of an EKF approach to sensor fusion for underwater navigation.
机译:本文报告了一种融合多个传感器测量值的方法,用于水下机器人的位置估计。还提出了该方法的同步和异步(AS)实现。扩展卡尔曼滤波器(EKF)用于融合四种类型的测量:多普勒速度测井(DVL)的线速度,陀螺仪的角速度,声标范围和深度。 EKF方法以三种方式实施,以处理校正步骤中测量的异步性。三种实现方法是同步集体(SC),同步个人(SI)和AS应用。通过仿真和试验箱实验对这些方法进行了验证和比较。测试表明,需要根据测量属性选择应用方法:测量之间的依赖关系和异步程度。在这项研究中提出的独特功能是三种应用方法以及EKF方法在水下导航传感器融合中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号