首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B >A neuro-fuzzy controller for mobile robot navigation and multirobot convoying
【24h】

A neuro-fuzzy controller for mobile robot navigation and multirobot convoying

机译:用于移动机器人导航和多机器人护航的神经模糊控制器

获取原文
获取原文并翻译 | 示例

摘要

A Neural integrated Fuzzy conTroller (NiF-T) which integrates the fuzzy logic representation of human knowledge with the learning capability of neural networks is developed for nonlinear dynamic control problems. NiF-T architecture comprises of three distinct parts: (1) Fuzzy logic Membership Functions (FMF), (2) a Rule Neural Network (RNN), and (3) an Output-Refinement Neural Network (ORNN). FMF are utilized to fuzzify sensory inputs. RNN interpolates the fuzzy rule set; after defuzzification, the output is used to train ORNN. The weights of the ORNN can be adjusted on-line to fine-tune the controller. In this paper, real-time implementations of autonomous mobile robot navigation and multirobot convoying behavior utilizing the NiF-T are presented. Only five rules were used to train the wall following behavior, while nine were used for the hall centering. Also, a robot convoying behavior was realized with only nine rules. For all of the described behaviors-wall following, hall centering, and convoying, their RNN's are trained only for a few hundred iterations and so are their ORNN's trained for only less than one hundred iterations to learn their parent rule sets.
机译:针对非线性动态控制问题,开发了一种将人类知识的模糊逻辑表示与神经网络的学习能力相结合的神经集成模糊控制器(NiF-T)。 NiF-T体系结构包括三个不同的部分:(1)模糊逻辑成员函数(FMF),(2)规则神经网络(RNN)和(3)输出精炼神经网络(ORNN)。 FMF用于模糊感官输入。 RNN插值模糊规则集;经过解模糊后,输出将用于训练ORNN。可以在线调整ORNN的权重以微调控制器。本文提出了利用NiF-T实时实现自主移动机器人导航和多机器人护卫行为的方法。仅使用五个规则来训练墙的跟随行为,而使用九个规则来进行大厅居中。而且,仅用九个规则就实现了机器人护卫行为。对于所描述的所有行为-墙跟随,大厅居中和护送,其RNN仅进行了数百次迭代训练,而其ORNN则仅进行了不到一百次迭代训练以学习其父规则集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号