首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Pose estimation for augmented reality applications using genetic algorithm
【24h】

Pose estimation for augmented reality applications using genetic algorithm

机译:使用遗传算法的增强现实应用姿势估计

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.
机译:本文介绍了一种遗传算法,可以解决计算机视觉中的姿势估计问题。当给出物体的三维结构时,我们的遗传算法可以准确地找到物体的旋转和平移。在我们的实现中,每个染色体都将姿势和索引编码到对象的选定点特征。我们的算法不仅搜索现有工作中的姿势,而且还搜索过程中包含最可靠特征点的集合。这种不匹配过滤策略成功地使算法在图像中存在点不匹配和离群值的情况下更加鲁棒。我们的算法已经过综合和真实数据测试,效果良好。将恢复的姿势的准确性与现有算法进行比较。在存在点失配和离群值的情况下,我们的方法优于Lowe方法和其他两个遗传算法。另外,它已被用来估计真实物体的姿态。结果表明,所提出的方法适用于增强现实应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号