首页> 外文期刊>IEEE Transactions on Signal Processing >Theoretical Results on Sparse Representations of Multiple-Measurement Vectors
【24h】

Theoretical Results on Sparse Representations of Multiple-Measurement Vectors

机译:多测量向量的稀疏表示的理论结果

获取原文
获取原文并翻译 | 示例

摘要

The sparse representation of a multiple-measurement vector (MMV) is a relatively new problem in sparse representation. Efficient methods have been proposed. Although many theoretical results that are available in a simple case-single-measurement vector (SMV)-the theoretical analysis regarding MMV is lacking. In this paper, some known results of SMV are generalized to MMV. Some of these new results take advantages of additional information in the formulation of MMV. We consider the uniqueness under both an lscr0-norm-like criterion and an lscr1-norm-like criterion. The consequent equivalence between the lscr0-norm approach and the lscr1-norm approach indicates a computationally efficient way of finding the sparsest representation in a redundant dictionary. For greedy algorithms, it is proven that under certain conditions, orthogonal matching pursuit (OMP) can find the sparsest representation of an MMV with computational efficiency, just like in SMV. Simulations show that the predictions made by the proved theorems tend to be very conservative; this is consistent with some recent advances in probabilistic analysis based on random matrix theory. The connections will be discussed
机译:多次测量向量(MMV)的稀疏表示是稀疏表示中一个相对较新的问题。已经提出了有效的方法。尽管在简单的案例单量向量(SMV)中可以获得许多理论结果,但是缺乏有关MMV的理论分析。本文将SMV的一些已知结果推广到MMV。这些新结果中的一些在MMV制定中利用了更多信息。我们在lscr0-norm-like准则和lscr1-norm-like准则下都考虑唯一性。 lscr0-norm方法和lscr1-norm方法之间的等效关系表明,在冗余字典中找到最稀疏表示形式的计算效率很高。对于贪婪算法,已证明在某些条件下,就像在SMV中一样,正交匹配追踪(OMP)可以找到具有计算效率的MMV的最稀疏表示。仿真表明,由证明定理得出的预测趋于非常保守。这与基于随机矩阵理论的概率分析的最新进展相一致。连接将被讨论

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号