首页> 外文期刊>IEEE transactions on circuits and systems. II, Express briefs >A Multiple-Measurement Vectors Reconstruction Method for Low SNR Scenarios
【24h】

A Multiple-Measurement Vectors Reconstruction Method for Low SNR Scenarios

机译:低SNR场景的多测量向量重建方法

获取原文
获取原文并翻译 | 示例

摘要

Multiple-measurement vectors (MMVs) compressed sensing (CS) provides a better reconstruction performance by using the jointly sparse property, but it suffers a severe performance degradation with the signal-to-noise ratio (SNR) decreasing. This brief presents, a novel MMV CS reconstruction method for the low SNR scenarios, called the signal combining-CS (SC-CS). Compared with other state-of-the-art reconstruction methods, the most innovative feature of the SC-CS is its ability of signal reconstruction in a weak SNR scenario. This makes it a promising candidate for many practical applications when the interfering noises are serious. The proposed method adopts the signal combining techniques, which can effectively suppress undesired noise in the combined measurement. In fact, the SC-CS provides a generalized MMV reconstruction framework in which different signal combining and reconstruction techniques can be used to augment this method. This framework also makes a good tradeoff between the reconstruction performance and the computational complexity. Simulation results show the effectiveness of the proposed method compared with the existing reconstruction methods especially for the low SNR scenarios.
机译:多测量矢量(MMV)压缩检测(CS)通过使用联合稀疏性能提供更好的重建性能,但它具有严重的性能劣化与信噪比(SNR)降低。本简要介绍,用于低SNR场景的新型MMV CS重建方法,称为信号组合-CS(SC-CS)。与其他最先进的重建方法相比,SC-CS的最具创新性特征是其信号重建在弱SNR场景中的能力。这使得当干扰噪声严重时,这使其成为许多实际应用的有希望的候选者。所提出的方法采用信号组合技术,其可以有效地抑制组合测量中的不期望的噪声。实际上,SC-CS提供了广义的MMV重建框架,其中可以使用不同的信号组合和重建技术来增加该方法。该框架还在重建性能和计算复杂性之间进行了良好的权衡。仿真结果表明,该方法的有效性与现有的重建方法相比,特别是对于低SNR情景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号