首页> 外文会议>2015 Picture Coding Symposium >Large-scale structured sparse image reconstruction with correlated multiple-measurement vectors using Bayesian learning
【24h】

Large-scale structured sparse image reconstruction with correlated multiple-measurement vectors using Bayesian learning

机译:使用贝叶斯学习的相关多次测量向量的大规模结构化稀疏图像重建

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a Bayesian learning approach to structured sparse image reconstruction. In contrast to conventional paradigms which convert images into high-dimensional vectors and thus are impractical for recovering large-scale images, we formulate columns of image matrices into a multiple-measurement-vector (MMV) model to reduce the problem dimension. Besides, we simultaneously exploit the tree structure of image wavelet coefficients and the column correlations of image matrices in wavelet domain as two prior structured constraints to improve reconstruction accuracy. Experimental results reveal that our method significantly outperforms other MMV-based strategies in terms of reconstruction error and provides a practical and efficient alternative to large-scale structured sparse image reconstruction.
机译:本文提出了一种用于结构化稀疏图像重建的贝叶斯学习方法。与将图像转换为高维向量并因此对于恢复大规模图像不切实际的常规范例相反,我们将图像矩阵列公式化为多次测量向量(MMV)模型以减少问题维数。此外,我们同时利用图像小波系数的树状结构和小波域中图像矩阵的列相关性作为两个先验的结构化约束,以提高重构精度。实验结果表明,在重建误差方面,我们的方法明显优于其他基于MMV的策略,并为大规模结构化稀疏图像重建提供了一种实用而有效的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号