首页> 外文期刊>Signal processing >Multiple-measurement vector based implementation for single-measurement vector sparse Bayesian learning with reduced complexity
【24h】

Multiple-measurement vector based implementation for single-measurement vector sparse Bayesian learning with reduced complexity

机译:基于多次测量矢量的单测量矢量稀疏贝叶斯学习的实现,具有降低的复杂度

获取原文
获取原文并翻译 | 示例

摘要

Sparse Bayesian learning (SBL) has high computational complexity associated with matrix inversion in each iteration. In this paper, we investigate complexity reduced multiple-measurement vector (MMV) based implementation for single-measurement vector SBL problems. For problems with special structured sensing matrices, we propose two sub-optimal SBL schemes with significantly reduced complexity and slight estimation performance degradation, by exploiting the deterministic correlation in the converted MMV model explicitly. Two application scenarios on channel estimation in multicarrier systems and direction of arrival estimation are presented. Simulation results validate the effectiveness of the schemes.
机译:稀疏贝叶斯学习(SBL)具有与每次迭代中的矩阵求逆相关的高计算复杂性。在本文中,我们研究了基于复杂度降低的多次测量向量(MMV)的单次测量向量SBL问题的实现。对于具有特殊结构感测矩阵的问题,我们通过明确利用转换后的MMV模型中的确定性相关性,提出了两种次优SBL方案,其复杂度大大降低,估计性能略有下降。提出了两种在多载波系统中信道估计和到达方向估计的应用场景。仿真结果验证了该方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号