首页> 外文期刊>Signal processing >Retrieval of sparse solutions of multiple-measurement vectors via zero-point attracting projection
【24h】

Retrieval of sparse solutions of multiple-measurement vectors via zero-point attracting projection

机译:通过零点吸引投影检索多测量向量的稀疏解

获取原文
获取原文并翻译 | 示例

摘要

A new sparse signal recovery algorithm for multiple-measurement vectors (MMV) problem is proposed in this paper. The sparse representation is iteratively drawn based on the idea of zero-point attracting projection (ZAP). In each iteration, the solution is first updated along the negative gradient direction of an approximate ε_(2.0) norm to encourage sparsity, and then projected to the solution space to satisfy the under-determined equation. A variable step size scheme is adopted further to accelerate the convergence as well as to improve the recovery accuracy. Numerical simulations demonstrate that the performance of the proposed algorithm exceeds the references in various aspects, as well as when applied to the modulated wideband converter, where recovering MMV problem is crucial to its performance.
机译:提出了一种新的针对多测量向量的稀疏信号恢复算法。基于零点吸引投影(ZAP)的思想,反复绘制稀疏表示。在每次迭代中,首先沿近似ε_(2.0)范数的负梯度方向更新解,以鼓励稀疏性,然后将其投影到解空间中,以满足未确定的方程式。进一步采用可变步长方案以加速收敛并提高恢复精度。数值仿真表明,所提出算法的性能在各个方面都超过了参考,以及在应用于调制宽带转换器时,MMV问题的恢复对其性能至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号