首页> 外文期刊>Signal Processing, IEEE Transactions on >Proof of Convergence and Performance Analysis for Sparse Recovery via Zero-Point Attracting Projection
【24h】

Proof of Convergence and Performance Analysis for Sparse Recovery via Zero-Point Attracting Projection

机译:零点吸引投影的稀疏恢复的收敛性证明和性能分析

获取原文
获取原文并翻译 | 示例

摘要

A recursive algorithm named zero-point attracting projection (ZAP) is proposed recently for sparse signal reconstruction. Compared with the reference algorithms, ZAP demonstrates rather good performance in recovery precision and robustness. However, any theoretical analysis about the mentioned algorithm, even a proof on its convergence, is not available. In this work, a strict proof on the convergence of ZAP is provided and the condition of convergence is put forward. Based on the theoretical analysis, it is further proved that ZAP is nonbiased and can approach the sparse solution to any extent, with the proper choice of step-size. Furthermore, the case of inaccurate measurements in noisy scenario is also discussed. It is proved that disturbance power linearly reduces the recovery precision, which is predictable but not preventable. The reconstruction deviation of $p$-compressible signal is also provided. Finally, numerical simulations are performed to verify the theoretical analysis.
机译:最近提出了一种用于零信号重建的递归算法,称为零点吸引投影(ZAP)。与参考算法相比,ZAP在恢复精度和鲁棒性方面显示出相当好的性能。但是,尚无关于上述算法的理论分析,甚至无法证明其收敛性。这项工作为ZAP的收敛提供了严格的证明,并提出了收敛的条件。在理论分析的基础上,进一步证明了ZAP是无偏的,并且可以通过适当选择步长来在任何程度上接近稀疏解。此外,还讨论了在嘈杂的情况下测量不准确的情况。事实证明,干扰功率会线性降低恢复精度,这是可以预见的,但无法避免。还提供了$ p $可压缩信号的重建偏差。最后,进行数值模拟以验证理论分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号