首页> 外文期刊>IEEE Transactions on Robotics >Towards Generalization in Target-Driven Visual Navigation by Using Deep Reinforcement Learning
【24h】

Towards Generalization in Target-Driven Visual Navigation by Using Deep Reinforcement Learning

机译:利用深增强学习,拓展目标驱动的视觉导航中的概括

获取原文
获取原文并翻译 | 示例

摘要

Among the main challenges in robotics, target-driven visual navigation has gained increasing interest in recent years. In this task, an agent has to navigate in an environment to reach a user specified target, only through vision. Recent fruitful approaches rely on deep reinforcement learning, which has proven to be an effective framework to learn navigation policies. However, current state-of-the-art methods require to retrain, or at least fine-tune, the model for every new environment and object. In real scenarios, this operation can be extremely challenging or even dangerous. For these reasons, we address generalization in target-driven visual navigation by proposing a novel architecture composed of two networks, both exclusively trained in simulation. The first one has the objective of exploring the environment, while the other one of locating the target. They are specifically designed to work together, while separately trained to help generalization. In this article, we test our agent in both simulated and real scenarios, and validate its generalization capabilities through extensive experiments with previously unseen goals and unknown mazes, even much larger than the ones used for training.
机译:在机器人学中的主要挑战中,目标驱动的视觉导航近年来越来越令人利益。在此任务中,代理必须在环境中导航以访问用户指定的目标,只能通过视觉。最近的富有成效的方法依赖于深度加强学习,已被证明是学习导航政策的有效框架。但是,当前的最先进的方法需要重新培训或至少进行微调,用于每个新环境和对象的模型。在实际情况下,这种操作可能非常具有挑战性甚至危险。由于这些原因,我们通过提出由两个网络组成的新颖架构来解决目标驱动的视觉导航中的泛化,这些架构都在仿真中训练。第一个有目的是探索环境,而另一个定位目标的目标。它们专门设计用于共同努力,同时单独培训以帮助泛化。在本文中,我们在模拟和实际方案中测试我们的代理,并通过与以前看不见的目标和未知的迷宫进行广泛的实验来验证其泛化能力,甚至比用于培训的目标要大得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号