首页> 外文期刊>IEEE Transactions on Robotics >Optimal Extended Jacobian Inverse Kinematics Algorithms for Robotic Manipulators
【24h】

Optimal Extended Jacobian Inverse Kinematics Algorithms for Robotic Manipulators

机译:机器人的最优扩展雅可比逆运动学算法。

获取原文
获取原文并翻译 | 示例

摘要

Extended Jacobian inverse kinematics algorithms for redundant robotic manipulators are defined by combining the manipulator's kinematics with an augmenting kinematics map in such a way that the combination becomes a local diffeomorphism of the augmented taskspace. A specific choice of the augmentation relies on the optimal approximation by the extended Jacobian of the Jacobian pseudoinverse (the Moore--Penrose inverse of the Jacobian). In this paper, we propose a novel formulation of the approximation problem, rooted conceptually in the Riemannian geometry. The resulting optimality conditions assume the form of a Poisson equation involving the Laplace--Beltrami operator. Two computational examples illustrate the theory.
机译:冗余机器人机械手的扩展Jacobian逆运动学算法是通过将机械手的运动学与增强运动学图进行组合来定义的,从而使组合成为增强任务空间的局部微分。扩展的具体选择取决于Jacobian伪逆(Jacobian的Moore-Penrose逆)的扩展Jacobian的最佳逼近。在本文中,我们提出了一种新的近似问题的表述,其概念起源于黎曼几何。所得的最优条件采用涉及Laplace-Beltrami算子的泊松方程形式。两个计算示例说明了该理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号