首页> 外文期刊>Robotics, IEEE Transactions on >Nonmyopic View Planning for Active Object Classification and Pose Estimation
【24h】

Nonmyopic View Planning for Active Object Classification and Pose Estimation

机译:非近视视图计划的活动对象分类和姿势估计

获取原文
获取原文并翻译 | 示例

摘要

One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing, and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection in which the point of view of a mobile depth camera is controlled. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. Then, a sequence of views, which balances the amount of energy used to move the sensor with the chance of identifying the correct hypothesis, is planned. We formulate an active hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate partially observable Markov decision process algorithm. The validity of our approach is verified through simulation and real-world experiments with the PR2 robot. The results suggest that the approach outperforms the widely used greedy viewpoint selection and provides a significant improvement over static object detection.
机译:计算机视觉中的中心问题之一是对语义上重要的对象的检测以及对它们的姿势的估计。目标检测的大部分工作都基于单个图像处理,并且其性能受到外观和几何形状的遮挡和模糊性的限制。本文提出了一种主动对象检测方法,其中可移动深度相机的视点受到控制。当初始静态检测阶段识别出感兴趣的对象时,将对其类别和方向做出几个假设。然后,计划一系列视图,该视图平衡用于移动传感器的能量与识别正确假设的机会之间的平衡。我们制定了一个包含传感器移动性的主动假设检验问题,并使用基于点的近似部分可观察的马尔可夫决策过程算法进行了求解。我们的方法的有效性通过PR2机器人的仿真和实际实验得到了验证。结果表明,该方法优于广泛使用的贪婪视点选择方法,在静态物体检测方面具有明显的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号