首页> 外文期刊>Computer vision and image understanding >Factorization of view-object manifolds for joint object recognition and pose estimation
【24h】

Factorization of view-object manifolds for joint object recognition and pose estimation

机译:视图对象流形的因式分解,用于联合对象识别和姿态估计

获取原文
获取原文并翻译 | 示例

摘要

Due to large variations in shape, appearance, and viewing conditions, object recognition is a key precursory challenge in the fields of object manipulation and robotic/AI visual reasoning in general. Recognizing object categories, particular instances of objects and viewpoints/poses of objects are three critical subprob-lems robots must solve in order to accurately grasp/manipulate objects and reason about their environments. Multi-view images of the same object lie on intrinsic low-dimensional manifolds in descriptor spaces (e.g. visual/depth descriptor spaces). These object manifolds share the same topology despite being geometrically different. Each object manifold can be represented as a deformed version of a unified manifold. The object manifolds can thus be parameterized by its homeomorphic mapping/reconstruction from the unified manifold. In this work, we develop a novel framework to jointly solve the three challenging recognition sub-problems, by explicitly modeling the deformations of object manifolds and factorizing it in a view-invariant space for recognition. We perform extensive experiments on several challenging datasets and achieve state-of-the-art results.
机译:由于形状,外观和观看条件的巨大差异,对象识别通常是对象操纵和机器人/ AI视觉推理领域中的主要先验挑战。识别对象类别,对象的特定实例以及对象的视点/姿势是机器人必须解决的三个关键子问题,以便准确地把握/操纵对象并了解其环境。同一对象的多视图图像位于描述符空间(例如视觉/深度描述符空间)中的固有低维流形上。尽管几何上不同,这些对象歧管共享相同的拓扑。每个对象歧管可以表示为统一歧管的变形形式。因此,可以通过从统一歧管进行同胚映射/重构来对对象歧管进行参数化。在这项工作中,我们通过明确地建模对象流形的变形并将其分解为视图不变的空间进行识别,从而开发出一种新颖的框架来共同解决三个具有挑战性的识别子问题。我们对几个具有挑战性的数据集进行了广泛的实验,并获得了最新的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号