首页> 外文期刊>IEEE Transactions on Robotics and Automation >Differential analysis of bifurcations and isolated singularities for robots and mechanisms
【24h】

Differential analysis of bifurcations and isolated singularities for robots and mechanisms

机译:机器人和机构的分叉和孤立奇点的差异分析

获取原文
获取原文并翻译 | 示例

摘要

This article develops a general technique for differential analysis that can be applied to singularities of three related problems: path tracking for nonredundant robots, self-motion analysis for robots with one degree of redundancy, and displacement analysis of single-loop mechanisms. For each of these problems, the locus of displacement solutions generally forms a set of one-dimensional manifolds in the space of variable parameters. However, if singularities occur, the manifolds may degenerate into isolated points, or into curves that include bifurcations at the singular points. Higher-order equations, derived from Taylor series expansion of the matrix equation of closure, are solved to identify singularity type and, in the case of bifurcations, to determine the number of intersecting branches as well as a Taylor series expansion of each branch about the point of bifurcation. To avoid unbounded mathematics, branch expansions are derived in terms of an introduced curve parameter. The results are useful for identifying singularity type, for numerical curve tracking with continuation past bifurcations on any chosen branch, and for determining exact rate relations for each branch at a bifurcation. The noniterative solution procedure involves configuration-dependent systems of equations that are evaluated by recursive algorithm, then solved using singular value decomposition, polynomial equation solution, and linear system solution. Examples show applications to RCRCR mechanisms and the Puma manipulator.
机译:本文开发了一种用于差分分析的通用技术,该技术可用于以下三个相关问题的奇异性:非冗余机器人的路径跟踪,具有一个冗余度的机器人的自运动分析以及单环机构的位移分析。对于这些问题中的每一个,位移解的位置通常在可变参数的空间中形成一组一维流形。但是,如果出现奇点,则歧管可能退化为孤立点,或者退化为在奇点处包含分叉的曲线。求解从闭合矩阵方程的泰勒级数展开中得到的高阶方程,以识别奇异类型,并且在分叉的情况下,确定相交分支的数量以及围绕该分支的每个分支的泰勒级数展开分叉点。为避免数学不受限制,分支扩展是根据引入的曲线参数导出的。结果对于识别奇异类型,用于在任何选定分支上连续经过分支的数值曲线跟踪以及确定分支处每个分支的精确速率关系很有用。非迭代求解过程涉及到与配置有关的方程组,这些系统通过递归算法进行评估,然后使用奇异值分解,多项式方程组解决方案和线性系统解决方案进行求解。示例显示了对RCRCR机制和Puma机械手的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号