首页> 外文期刊>IEEE Transactions on Robotics and Automation >Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems
【24h】

Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems

机译:不确定非线性系统的鲁棒自适应模糊神经控制器

获取原文
获取原文并翻译 | 示例

摘要

A robust adaptive fuzzy-neural controller for a class of unknown nonlinear dynamic systems with external disturbances is proposed. The fuzzy-neural approximator is established to approximate an unknown nonlinear dynamic system in a linearized way. The fuzzy B-spline membership function (BMF) which possesses a fixed number of control points is developed for online tuning. The concept of tuning the adjustable vectors, which include membership functions and weighting factors, is described to derive the update laws of the robust adaptive fuzzy-neural controller. Furthermore, the effect of all the unmodeled dynamics, BMF modeling errors and external disturbances on the tracking error is attenuated by the error compensator which is also constructed by fuzzy-neural inference. We prove that the closed-loop system which is controlled by the robust adaptive fuzzy-neural controller is stable and the tracking error will converge to zero under mild assumptions. Several examples are simulated in order to confirm the effectiveness and applicability of the proposed methods.
机译:针对一类未知的带有外部干扰的非线性动力系统,提出了一种鲁棒的自适应模糊神经控制器。建立了模糊神经近似器,以线性方式近似未知的非线性动力系统。具有固定数量的控制点的模糊B样条隶属度函数(BMF)用于在线调整。描述了调整可调整矢量的概念,其中包括隶属函数和加权因子,以导出鲁棒自适应模糊神经控制器的更新律。此外,所有未建模的动力学,BMF建模误差和外部干扰对跟踪误差的影响都由误差补偿器减弱,该误差补偿器也由模糊神经推理构造。我们证明了由鲁棒自适应模糊神经控制器控制的闭环系统是稳定的,在温和的假设下跟踪误差将收敛到零。为了验证所提出方法的有效性和适用性,对几个例子进行了仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号