首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems
【24h】

An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems

机译:基于在线遗传算法的不确定非线性系统输出反馈直接自适应模糊神经控制器

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel design of a GA-based output-feedback direct adaptive fuzzy-neural controller (GODAF controller) for uncertain nonlinear dynamical systems. The weighting factors of the direct adaptive fuzzy-neural controller can successfully be tuned online via a GA approach. Because of the capability of genetic algorithms (GAs) in directed random search for global optimization, one is used to evolutionarily obtain the optimal weighting factors for the fuzzy-neural network. Specifically, we use a reduced-form genetic algorithm (RGA) to adjust the weightings of the fuzzy-neural network. In RGA, a sequential-search -based crossover point (SSCP) method determines a suitable crossover point before a single gene crossover actually takes place so that the speed of searching for an optimal weighting vector of the fuzzy-neural network can be improved. A new fitness function for online tuning the weighting vector of the fuzzy-neural controller is established by the Lyapunov design approach. A supervisory controller is incorporated into the GODAF controller to guarantee the stability of the closed-loop nonlinear system. Examples of nonlinear systems controlled by the GODAF controller are demonstrated to illustrate the effectiveness of the proposed method.
机译:在本文中,我们为不确定的非线性动力系统提出了一种基于遗传算法的输出反馈直接自适应模糊神经控制器(GODAF控制器)的新颖设计。直接自适应模糊神经控制器的加权因子可以通过遗传算法成功地在线调整。由于遗传算法(GA)可以进行定向随机搜索以进行全局优化,因此可以用来进化地获得模糊神经网络的最佳加权因子。具体来说,我们使用简化形式的遗传算法(RGA)来调整模糊神经网络的权重。在RGA中,基于顺序搜索的交叉点(SSCP)方法在实际发生单个基因交叉之前确定合适的交叉点,从而可以提高搜索模糊神经网络的最佳加权向量的速度。通过Lyapunov设计方法,建立了一种新的适应性函数,用于在线调整模糊神经控制器的加权矢量。 GODAF控制器中集成了一个监督控制器,以确保闭环非线性系统的稳定性。演示了由GODAF控制器控制的非线性系统示例,以说明所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号