首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Genetics-based learning of new heuristics: rational scheduling of experiments and generalization
【24h】

Genetics-based learning of new heuristics: rational scheduling of experiments and generalization

机译:基于遗传学的新启发式学习:合理安排实验和推广

获取原文
获取原文并翻译 | 示例

摘要

We present new methods for the automated learning of heuristics in knowledge lean applications and for finding heuristics that can be generalized to unlearned domains. These applications lack domain knowledge for credit assignment; hence, operators for composing new heuristics are generally model free, domain independent, and syntactic in nature. The operators we have used are genetics based; examples of which include mutation and cross over. Learning is based on a generate and test paradigm that maintains a pool of competing heuristics, tests them to a limited extent, creates new ones from those that perform well in the past, and prunes poor ones from the pool. We have studied three important issues in learning better heuristics: anomalies in performance evaluation; rational scheduling of limited computational resources in testing candidate heuristics in single objective as well as multiobjective learning; and finding heuristics that can be generalized to unlearned domains. We show experimental results in learning better heuristics for: process placement for distributed memory multicomputers, node decomposition in a branch and bound search, generation of test patterns in VLSI circuit testing, and VLSI cell placement and routing.
机译:我们提出了新的方法,用于在知识贫乏的应用程序中自动学习启发式方法,并找到可以推广到未学习领域的启发式方法。这些应用程序缺乏用于学分分配的领域知识;因此,构成新启发式算法的运算符通常是无模型的,领域独立的和语法性的。我们使用的运算符基于遗传;例如变异和交叉。学习基于生成和测试范式,该范式维护竞争性启发式方法的集合,在有限的程度上对其进行测试,从过去表现良好的方面创建新的启发式方法,并从池中修剪较差的启发式方法。我们研究了学习更好的启发式方法的三个重要问题:性能评估中的异常;在单个目标以及多目标学习中测试候选启发式方法时,有限计算资源的合理调度;并找到可以推广到未学习领域的启发式方法。我们在学习更好的启发式方法方面显示了实验结果,这些方法包括:分布式内存多计算机的处理布置,分支和边界搜索中的节点分解,VLSI电路测试中测试模式的生成以及VLSI单元的布置和布线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号