首页> 外文期刊>Image Processing, IEEE Transactions on >Removal of Vesicle Structures From Transmission Electron Microscope Images
【24h】

Removal of Vesicle Structures From Transmission Electron Microscope Images

机译:从透射电子显微镜图像中去除囊泡结构

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruction. In our approach, we estimate the subspace of the vesicle structures and project the micrographs onto the orthogonal complement of this subspace. We construct a 2D statistical model of the vesicle structure, based on higher order singular value decomposition (HOSVD), by considering the structural symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion are proposed to make a compact and general model. The results show that the vesicle structures are accurately separated from the background by the HOSVD model that is also able to adapt to the asymmetries of the vesicles. This is a promising result and suggests even wider applicability of the proposed approach in learning and removal of statistical structures.
机译:在本文中,我们解决了分离蛋白质结构的单粒子冷冻电子显微镜重建膜蛋白成像问题。更准确地说,我们提出了一种在重建之前从显微照片中学习并去除干扰囊泡信号的方法。在我们的方法中,我们估计了囊泡结构的子空间,并将显微照片投影到该子空间的正交互补上。我们考虑到囊泡在极坐标平面上的结构对称性,基于高阶奇异值分解(HOSVD),构建了囊泡结构的二维统计模型。然后,我们提出通过将多维HOSVD系数的主要成分进行汇总来将HOSVD模型提升为一个新颖的分层模型。与模型一起,提出了一种固体囊泡归一化方案和模型选择准则,以建立一个紧凑而通用的模型。结果表明,HOSVD模型可将囊泡结构与背景准确分离,该模型也能够适应囊泡的不对称性。这是一个令人鼓舞的结果,表明所提出的方法在学习和删除统计结构中具有更大的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号