首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Efficient Positive-Real Balanced Truncation of Symmetric Systems Via Cross-Riccati Equations
【24h】

Efficient Positive-Real Balanced Truncation of Symmetric Systems Via Cross-Riccati Equations

机译:交叉Riccati方程的对称系统有效正实平衡截断

获取原文
获取原文并翻译 | 示例

摘要

We present a highly efficient approach for realizing a positive-real balanced truncation (PRBT) of symmetric systems. The solution of a pair of dual algebraic Riccati equations in conventional PRBT, whose cost constrains practical large-scale deployment, is reduced to the solution of one cross-Riccati equation (XRE). The cross-Riccatian nature of the solution then allows a simple construction of PRBT projection matrices, using a Schur decomposition, without actual balancing. An invariant subspace method and a modified quadratic alternating-direction-implicit iteration scheme are proposed to efficiently solve the XRE. A low-rank variant of the latter is shown to offer a remarkably fast PRBT speed over the conventional implementations. The XRE-based framework can be applied to a large class of linear passive networks, and its effectiveness is demonstrated through numerical examples.
机译:我们提出一种高效的方法来实现对称系统的正实平衡截断(PRBT)。传统PRBT中一对偶数代数Riccati方程的求解(其成本限制了实际大规模部署)被简化为一个交叉Riccati方程(XRE)的求解。然后,该解决方案的交叉里卡特性质允许使用Schur分解简单构造PRBT投影矩阵,而无需实际平衡。提出了不变子空间方法和改进的二次交替方向-隐式迭代方案,以有效地求解XRE。后者的低等级变体显示出与传统实现方式相比提供了非常快的PRBT速度。基于XRE的框架可以应用于大量的线性无源网络,并且通过数值示例证明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号