首页> 外文期刊>IEEE Robotics and Automation Letters >Distributed Proprioception of 3D Configuration in Soft, Sensorized Robots via Deep Learning
【24h】

Distributed Proprioception of 3D Configuration in Soft, Sensorized Robots via Deep Learning

机译:通过深度学习在软,传感机器人中的3D配置的分布式预见

获取原文
获取原文并翻译 | 示例

摘要

Creating soft robots with sophisticated, autonomous capabilities requires these systems to possess reliable, on-line proprioception of 3D configuration through integrated soft sensors. We present a framework for predicting a soft robot & x0027;s 3D configuration via deep learning using feedback from a soft, proprioceptive sensor skin. Our framework introduces a kirigami-enabled strategy for rapidly sensorizing soft robots using off-the-shelf materials, a general kinematic description for soft robot geometry, and an investigation of neural network designs for predicting soft robot configuration. Even with hysteretic, non-monotonic feedback from the piezoresistive sensors, recurrent neural networks show potential for predicting our new kinematic parameters and, thus, the robot & x0027;s configuration. One trained neural network closely predicts steady-state configuration during operation, though complete dynamic behavior is not fully captured. We validate our methods on a trunk-like arm with 12 discrete actuators and 12 proprioceptive sensors. As an essential advance in soft robotic perception, we anticipate our framework will open new avenues towards closed loop control in soft robotics.
机译:通过集成软传感器创建具有复杂的自主能力的软机器,需要这些系统可具有可靠的,在线配置3D配置。我们介绍了一种通过深入学习预测软机器和X0027; S 3D配置的框架,通过深入学习,使用来自软,良好的预感传感器皮肤的反馈。我们的框架介绍了一种支持柔软机器人的软机器人的启用Kirigami的策略,是软机器人几何的一般运动学描述,以及用于预测软机器人配置的神经网络设计的研究。即使是带有压阻传感器的滞后,非单调反馈,经常性神经网络也表明了预测我们新运动参数的可能性,从而提供了机器人和X0027的配置。一个训练有素的神经网络在操作期间密切预测稳态配置,但不完全捕获完整的动态行为。我们将我们的方法验证在一个带有12个分立执行器和12个原主的传感器的行李箱臂上。作为软机器人感知的基本进步,我们预计我们的框架将在软机器人中开辟新的封闭环路控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号