首页> 外文期刊>Expert systems with applications >Diversity of quantum optimizations for training adaptive support vector regression and its prediction applications
【24h】

Diversity of quantum optimizations for training adaptive support vector regression and its prediction applications

机译:训练自适应支持向量回归的量子优化多样性及其预测应用

获取原文
获取原文并翻译 | 示例

摘要

Three kinds of quantum optimizations are introduced in this paper as follows: quantum minimization (QM), neuromorphic quantum-based optimization (NQO), and logarithmic search with quantum existence testing (LSQET). In order to compare their optimization ability for training adaptive support vector regression, the performance evaluation is accomplished in the basis of forecasting the complex time series through two real world experiments. The model used for this complex time series prediction comprises both BPNN-Weighted Grey-C3LSP (BWGC) and nonlinear generalized autoregressive conditional heteroscedasticity (NGARCH) that is tuned perfectly by quantum-optimized adaptive support vector regression. Finally, according to the predictive accuracy of time series forecast and the cost of the computational complexity, the concluding remark will be made to illustrate and discuss these quantum optimizations.
机译:本文介绍了三种量子优化方法,分别是:量子最小化(QM),基于神经形态的量子优化(NQO)和带有量子存在性测试的对数搜索(LSQET)。为了比较它们用于训练自适应支持向量回归的优化能力,在通过两个真实世界的实验预测复杂时间序列的基础上完成了性能评估。用于此复杂时间序列预测的模型包括BPNN加权Grey-C3LSP(BWGC)和非线性广义自回归条件异方差(NGARCH),可通过量子优化自适应支持向量回归对其进行完美调整。最后,根据时间序列预测的预测准确性和计算复杂性的代价,将在最后做说明并讨论这些量子优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号