首页> 外文期刊>Engineering with Computers >A comparison of artificial intelligence-based classification techniques in predicting flow variables in sharp curved channels
【24h】

A comparison of artificial intelligence-based classification techniques in predicting flow variables in sharp curved channels

机译:基于人工智能的分类技术在预测急弯通道流量变量中的比较

获取原文
获取原文并翻译 | 示例

摘要

Due to the complexity of variable distributions, it is essential to evaluate the flow patterns in sharp curved channels with different angles. It has recently become more common to use classification methods in combination with different artificial intelligence (AI) models to boost AI model performance. Gholami et al. (Appl Soft Comput 48:563-583, 2016a) obtained enhanced results by combining two common AI models with a classifier based on decision trees to estimate the flow velocity and flow depth in a 90° sharp curved channel. Their results represent the superior performance and accuracy of hybrid models over classic AI models alone. However, because the diversion angle in intake and bend channels has a considerable influence on the flow variables, the flow patterns differ in 60° and 90° bend channels. Hence, the present paper evaluates the goodness-of-fit results of the classifier multilayer perceptron (CMLP) and classifier radial basis function (CRBF) models designed based on decision trees. These models were designed to estimate the velocity and flow depth patterns in a 60° sharp curved channel based on 780 observational data for six flow rates: 5, 7.8, 13.6, 19.1, 25.3, and 30.6 l/s. According to the mean absolute relative error (MARE) and determination coefficient (R~2) results of 0.0514 and 0.6 for velocity and 0.005 and 0.99 for flow depth prediction, the proposed CMLP model is more accurate than the classic MLP model. The CRBF model performed similar to CMLP, whereby CRBF predicted both velocity (MARE0.086 and R~2 = 0.9) and flow depth (MARE0.0133 and R~2 = 0.9) more accurately than the RBF model alone. Overall, the CMLP and CRBF models exhibited MARE reductions of 3% and 20% in velocity prediction and 36% and 22% in flow depth prediction compared to the individual MLP and RBF models, respectively. Moreover, CMLP and CRBF produce robust relationships based on different categories established according to various hydraulic conditions. The uncertainty analysis results show that, among the models examined, CMLP had the lowest uncertainty with the narrowest width of confidence bounds (WCB) of ±0.1385 and ±0.0031 in predicting velocity and flow depth, respectively. Moreover, CMLP and CRBF exhibited the greatest reliability with the lowest uncertainty indices in estimating the two flow variables in curved channels compared to the classic MLP and RBF models. Therefore, the combined Al-based classification models proposed in this study can serve as alternatives to the classic MLP and RBF models in the design and construction of curved channels with 60° and 90° bends.
机译:由于变量分布的复杂性,必须评估具有不同角度的尖锐弯曲通道中的流型。最近,将分类方法与不同的人工智能(AI)模型结合使用以提高AI模型的性能已变得越来越普遍。 Gholami等。 (Appl Soft Comput 48:563-583,2016a)通过将两个常见的AI模型与基于决策树的分类器组合在一起以估计90°锐弯通道中的流速和流速深度获得了增强的结果。他们的结果代表了混合模型优于仅传统AI模型的卓越性能和准确性。但是,由于进气道和弯道中的转向角对流量变量有相当大的影响,因此60°和90°弯道中的流型会有所不同。因此,本文评估了基于决策树设计的分类器多层感知器(CMLP)和分类器径向基函数(CRBF)模型的拟合优度结果。这些模型的设计是根据780种观测数据(六种流速:5、7.8、13.6、19.1、25.3和30.6 l / s)来估计60°锐弯通道中的速度和流速深度模式。根据速度的平均绝对相对误差(MARE)和确定系数(R〜2)的结果分别为速度0.0514和0.6以及流量深度预测0.005和0.99,所提出的CMLP模型比经典MLP模型更准确。 CRBF模型的执行与CMLP类似,因此CRBF预测速度(MARE0.086和R〜2 = 0.9)和流动深度(MARE0.0133和R〜2 = 0.9)比单独使用RBF模型更为准确。总体而言,与单独的MLP和RBF模型相比,CMLP和CRBF模型的MARE速度预测分别降低了3%和20%,流动深度预测降低了36%和22%。此外,CMLP和CRBF基于根据各种液压条件建立的不同类别产生稳健的关系。不确定性分析结果表明,在所检验的模型中,CMLP在预测速度和流深方面的不确定性最低,置信边界(WCB)的最窄宽度分别为±0.1385和±0.0031。此外,与经典的MLP和RBF模型相比,CMLP和CRBF在估算弯曲通道中的两个流量变量时表现出最高的可靠性和最低的不确定性指标。因此,本研究中提出的基于Al的组合分类模型可以替代传统的MLP和RBF模型,用于设计和构造60°和90°弯曲的弯曲通道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号