首页> 外文期刊>Engineering Applications of Artificial Intelligence >Neuro-fuzzy networks and their application to fault detection of dynamical systems
【24h】

Neuro-fuzzy networks and their application to fault detection of dynamical systems

机译:神经模糊网络及其在动力系统故障检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

The paper tackles the problem of robust fault detection using Takagi-Sugeno neuro-fuzzy (N-F) models. A model-based strategy is employed to generate residuals in order to make a decision about the state of the process. Unfortunately, such an approach is corrupted by model uncertainty due to the fact that in real applications there exists a model-reality mismatch. In order to ensure reliable fault detection, the adaptive threshold technique is used to deal with the problem. The paper focuses also on the N-F model design procedure. The bounded-error approach is applied to generate rules for the model using available data. The proposed algorithms are applied to fault detection in a valve that is a part of the technical installation at the Lublin sugar factory in Poland. Experimental results are presented in the final part of the paper to confirm the effectiveness of the method.
机译:本文解决了使用Takagi-Sugeno神经模糊(N-F)模型进行鲁棒故障检测的问题。采用基于模型的策略来生成残差,以便对过程状态做出决策。不幸的是,由于在实际应用中存在模型现实不匹配的事实,这种方法因模型不确定性而受到破坏。为了确保可靠的故障检测,使用自适应阈值技术来解决该问题。本文还重点介绍了N-F模型的设计过程。应用有限错误方法使用可用数据为模型生成规则。所提出的算法被应用于阀门的故障检测中,该阀门是波兰卢布林制糖厂技术安装的一部分。实验结果在论文的最后部分给出,以确认该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号