首页> 外文期刊>Electron Devices, IEEE Transactions on >Are Interface State Generation and Positive Oxide Charge Trapping Under Negative-Bias Temperature Stressing Correlated or Coupled?
【24h】

Are Interface State Generation and Positive Oxide Charge Trapping Under Negative-Bias Temperature Stressing Correlated or Coupled?

机译:负偏置温度应力下的界面状态生成和正氧化物电荷陷阱是相关还是耦合的?

获取原文
获取原文并翻译 | 示例

摘要

Studies have suggested that interface state generation under negative-bias temperature (NBT) stress results in positive oxide charge trapping. The latter is ascribed to the trapping of hydrogen species, from Si–H bond dissociation, in the oxide bulk. In this paper, we present evidence from dynamic NBT instability showing no apparent relationship between the two degradation mechanisms. The level of positive oxide trapped charge is shown to remain constant despite a nonnegligible increase of threshold voltage $V_{t}$ shift due to interface state generation. This observation implies that Si–H bond dissociation did not result in any significant positive oxide trapped charge, and that the latter is due to a different mechanism (e.g., hole trapping at oxygen vacancies). The inference is supported by results from channel hot-hole stress, which is known to dissociate Si–H bonds but did not increase the level of positive oxide trapped charge. Possible reasons for the difference between previous and current studies are discussed. We also examine the observation on the “universal scalability” of $V_{t}$ drift curves from different stress conditions, as explained by $E^{prime} {-} P_{b}$ coupling, i.e., Si–H bond dissociation is driven by hole trapping at nearby oxygen vacancies. We revisit an earlier observation that shows that such scalability only holds in the initial stage when positive oxide charge trapping is dominant, and that the scaled $V_{t}$ drift curves eventually diverge in the later stage. Further evidence shows that the divergence is caused by interface state generation proceeding at a faster rate compared to positive oxide charge trapping. The result c-nnfirms that a part of interface degradation proceeds independently of positive oxide charge trapping.
机译:研究表明,在负偏置温度(NBT)应力下产生界面态会导致正电荷捕获。后者归因于从Si–H键解离中捕获的氢物种在氧化物主体中。在本文中,我们提供了来自动态NBT不稳定性的证据,表明两种降解机制之间没有明显的关系。尽管由于界面状态的产生阈值电压$ V_ {t} $的偏移不可忽略地增加,但正氧化物俘获的电荷水平仍保持恒定。该观察结果表明,Si-H键解离不会导致任何明显的正氧化物俘获电荷,而后者是由于不同的机理所致(例如,在氧空位处的空穴俘获)。通道热空穴应力的结果支持了这一推论,已知该应力可解离Si-H键,但不会增加正氧化物俘获电荷的水平。讨论了以前与当前研究之间差异的可能原因。我们还研究了不同应力条件下$ V_ {t} $漂移曲线“通用可扩展性”的观察结果,如$ E ^ {prime} {-} P_ {b} $耦合,即Si–H键离解由附近氧空位处的空穴陷阱驱动。我们重新审视了一个较早的观察结果,该观察结果表明,这种可伸缩性仅在初始阶段(当正电荷俘获占主导地位时才有效)保持不变,而缩放后的$ V_ {t} $漂移曲线最终会在后期阶段发散。进一步的证据表明,发散是由于界面态的产生比正氧化物电荷俘获以更快的速率进行的。结果表明,界面降解的一部分独立于正电荷捕获而进行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号