首页> 中国专利> 一种具有双层氧化物纳米晶存储层的电荷陷阱存储器件及其制备方法

一种具有双层氧化物纳米晶存储层的电荷陷阱存储器件及其制备方法

摘要

本发明公开了一种具有双层氧化物纳米晶存储层的电荷陷阱存储器件及其制备方法,利用M

著录项

  • 公开/公告号CN108493095A

    专利类型发明专利

  • 公开/公告日2018-09-04

    原文格式PDF

  • 申请/专利权人 安阳师范学院;

    申请/专利号CN201810212708.1

  • 发明设计人 汤振杰;李荣;张希威;

    申请日2018-03-06

  • 分类号

  • 代理机构

  • 代理人

  • 地址 455000 河南省安阳市弦歌大道436号

  • 入库时间 2023-06-19 06:25:45

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-04-14

    授权

    授权

  • 2018-09-28

    实质审查的生效 IPC(主分类):H01L21/02 申请日:20180306

    实质审查的生效

  • 2018-09-04

    公开

    公开

说明书

技术领域

本发明属微电子器件及其材料领域,涉及一种具有双层氧化物纳米晶存储层的电荷存储器件及其制备方法。

背景技术

随着社会的进步,信息存储越来越受到重视,其中存储密度高、数据保持时间长等特点成为行业研究人员关注的重点。在众多非易失性存储器候选结构中,硅-氧化物-氮化物-氧化物-多晶硅(SONOS)型电荷陷阱存储器件便是一种极具发展前景的存储结构,其中紧接着硅(Si)的氧化物(SiO2)作为隧穿层,氮化物(Si3N4)作为存储层,紧挨着多晶硅电极的氧化物(SiO2)作为阻挡层。但是,传统的SONOS型电荷陷阱存储器件存在存储态密度低和浅能级缺陷态密度较高等缺点,导致提高存储密度必须以牺牲数据保持性能作为代价。因此,达到存储密度与数据保持性能之间的平衡,成为行业人员研究的难点和重点。

对于SONOS型陷阱存储器件,存储层中的缺陷态密度决定了器件的存储密度,而缺陷能级深度决定了数据保持性能。具有较高陷阱态密度、较深缺陷能级的存储层及其制备方法成为提高SONOS器件存储性能的关键。从器件存储层角度考虑,材料之间的界面能够提供大量的缺陷和较深的能级,有利于提高器件的存储密度和数据保持能力。近年来,介质层包裹金属氧化物纳米晶颗粒被认为是下一代电荷陷阱存储器件的存储媒介。但是,氧化物纳米晶作为存储媒介同样面临困难,即大尺寸纳米晶颗粒虽然具有较深的能级,但减小了比表面积,降低了缺陷密度,难以获得较高的存储密度;小尺寸纳米晶,虽然比表面积较大,缺陷密度较高,但晶粒结构不稳定,深能级缺陷较少,数据保持性能很难提高。基于以上考虑,我们发明了一种双层氧化物纳米晶存储层的电荷陷阱存储器件及其制备方法。借助脉冲激光沉积方法,在Si衬底上顺序生长隧穿层(SiO2)、堆栈的多元氧化物存储层、阻挡层(SiO2),通过薄膜沉积过程中原位不同温度、时间的保温,使堆栈存储层中析出不同尺寸的氧化物纳米晶颗粒,达到存储密度和数据保持性能之间的平衡。

发明内容

本发明提供了一种具有双层氧化物纳米晶存储层的电荷陷阱存储器件及其制备方法,操作简单。

所述具有双层氧化物纳米晶存储层的电荷陷阱存储器件的制备过程如下:

a)利用氢氟酸清洗Si衬底,去除Si表面的氧化物,然后将Si衬底放置在脉冲激光沉积系统腔内的衬底台上,将SiO2、多元氧化物Mx(SiO2)1-x和铂(Pt)靶材置于靶材底盘上,其中M可在ZrO2、HfO2、La2O3中任选一种,x在0.1-0.3范围内取值,腔内压强为1×10-4Pa;

b)利用脉冲激光沉积系统在Si衬底表面沉积一层SiO2作为隧穿层,如图1(a)所示;

c)利用脉冲激光沉积系统在SiO2隧穿层表面沉积第一层Mx(SiO2)1-x薄膜,然后将衬底台温度由室温升高到800℃,使具有低结晶温度的M氧化物从Mx(SiO2)1-x薄膜母相中析出,并原位保温15分钟,使结晶充分,紧接着在第一层Mx(SiO2)1-x薄膜表面沉积层间介质SiO2薄膜,然后降低衬底台温度到600℃,接下来在层间介质SiO2表面沉积第二层Mx(SiO2)1-x薄膜,厚度与第一层相同,原位保温1分钟,然后将衬底台温度降低到室温,顺序沉积的Mx(SiO2)1-x/层间介质SiO2/Mx(SiO2)1-x作为存储层,如图1(b)所示;

d)利用脉冲激光沉积系统在之前形成的存储层表面沉积一层SiO2作为阻挡层,如图1(c)所示;

e)利用脉冲激光沉积方法在SiO2阻挡层表面沉积一层Pt作为上电极,将银胶涂抹在Si衬底背面作为下电极,如图1(d)所示;

为了满足器件小型化的需求,SiO2隧穿层的厚度应控制在2-4nm,Mx(SiO2)1-x的厚度应控制在5-6nm,层间介质SiO2的厚度应控制在为1-2nm,SiO2阻挡层的厚度应控制在20-30nm,Pt上电极的厚度应控制在100-200nm。

上述制备的具有双层氧化物纳米晶存储层的电荷陷阱存储器件包含顺序连接的隧穿层、堆栈的存储层和阻挡层,顺序生长的Mx(SiO2)1-x/层间介质SiO2/Mx(SiO2)1-x作为存储层,其中第一层Mx(SiO2)1-x在800℃下保温时间大于15分钟,M纳米晶有足够的时间析出、粗化、长大,因此析出的晶粒尺寸大,密度小;而第二层Mx(SiO2)1-x在600℃下保温时间控制在1分钟,析出的M纳米晶没有足够的时间粗化和长大,降温后得到的纳米晶尺寸较第一层要小,密度大,如图2所示。因此通过改变衬底温度和保温时间,达到了第一层M纳米晶尺寸比第二层M纳米晶尺寸大的目的,实现了双层M纳米晶颗粒尺寸的控制。

上述制备方法所得具有双层氧化物纳米晶存储层的电荷陷阱存储器件在电荷存储密度方面的性能可用不同栅极扫描电压下的平带电压偏移量表征,如图3所示:

当器件结构的Pt上电极施加正向电压时,电场指向Si衬底方向,Si衬底当中的电子在电场力的作用下穿过隧穿层进入存储层,被存储层中析出的M纳米晶与周围介质层的缺陷俘获,引起平带电压向正向的偏移;当器件结构的Pt上电极施加负向电压时,电场指向Pt电极,存储层俘获的电子在电场力的作用下,穿过隧穿层回到Si衬底,引起平带电压向负向的偏移,正向和负向平带电压偏移之差为平带电压偏移量。从图3中可以看出,(ZrO2)0.2(SiO2)0.8/SiO2/(ZrO2)0.2(SiO2)0.8存储层经过800℃,15分钟的原位保温后,具有最小的平带电压偏移量;(ZrO2)0.2(SiO2)0.8/SiO2/(ZrO2)0.2(SiO2)0.8存储层经过600℃,1分钟的原位保温后,具有最大的平带电压偏移量;而经过分段原位保温的器件(第一层(ZrO2)0.2(SiO2)0.8薄膜800℃,15分钟原位保温,第二层(ZrO2)0.2(SiO2)0.8薄膜600℃,1分钟原位保温)的偏移量较600℃,1分钟原位保温略小。这主要是因为,(ZrO2)0.2(SiO2)0.8/SiO2/(ZrO2)0.2(SiO2)0.8经过800℃,15分钟保温后,析出的ZrO2在高温下有充足的时间粗化和长大,导致纳米晶尺寸较大,密度低,比表面积小,从而具有较低的缺陷密度,平带电压偏移量最小;(ZrO2)0.2(SiO2)0.8/SiO2/(ZrO2)0.2(SiO2)0.8经过600℃,1分钟保温后,析出的ZrO2在低温下,没有充足的时间进行粗化和长大过程,导致纳米晶尺寸较小,密度大,比表面积大,从而具有较高的缺陷密度,平带电压偏移量最大;而对于经过分段原位保温的器件,两层纳米晶的尺寸不同,缺陷密度适中,因此在相同栅极扫描电压下,平带电压偏移量处于上述两种情况之间。

上述制备方法所得具有双层氧化物纳米晶存储层的电荷陷阱存储器件的数据保持性能,如图4所示:

从图中可以看出,(ZrO2)0.2(SiO2)0.8/SiO2/(ZrO2)0.2(SiO2)0.8存储层经过600℃,1分钟的原位保温,器件的电荷损失量最大,经过104秒后,电荷损失量为5.7%;(ZrO2)0.2(SiO2)0.8/SiO2/(ZrO2)0.2(SiO2)0.8存储层经过800℃,15分钟的原位保温与分段保温过程后器件的电荷损失量几乎相同,经过104秒后,电荷损失量分别为3.8%和4%。这主要是因为,存储层经过600℃,1分钟的原位保温,析出的纳米晶尺寸较小,结构不稳定,深能级陷阱不易获得,俘获的电荷很容易损失;而经过800℃,15分钟的原位保温后,纳米晶结构稳定,深能级缺陷较多,俘获的电荷不易损失,电荷损失量较小。而分段保温过程得到的器件,表现出良好的数据保持性能。根据图3和图4可知,600℃,1分钟原位保温得到的器件,虽然表现出较大的平带电压偏移量,存储电荷密度最大,但数据保持性能最差,电荷损失量最大;800℃,15分钟原位保温得到的器件,虽然数据保持性能最佳,但电荷存储密度最小。而经过分段原位保温的器件(第一层(ZrO2)0.2(SiO2)0.8薄膜800℃,15分钟原位保温,第二层(ZrO2)0.2(SiO2)0.8薄膜600℃,1分钟原位保温),具有两层尺寸不同的纳米晶颗粒,既能满足较高的电荷存储密度,又具有良好的数据保持能力,实现了存储密度与数据保持性能之间的平衡,具有良好的应用前景。

附图说明

图1:具有双层氧化物纳米晶存储层的电荷陷阱存储器件的制备过程,a)利用脉冲激光系统沉积SiO2隧穿层;b)利用脉冲激光系统在隧穿层表面顺序生沉积Mx(SiO2)1-x/层间介质SiO2/Mx(SiO2)1-x堆栈结构作为存储层;c)利用脉冲激光系统在存储层表面沉积SiO2阻挡层;d)利用脉冲激光沉积在阻挡层表面沉积Pt上电极,利用银胶作为下电极。

图2:具有双层氧化物纳米晶存储层的电荷陷阱存储器件示意图。

图3:(ZrO2)0.2(SiO2)0.8/SiO2/(ZrO2)0.2(SiO2)0.8基双层氧化物纳米晶电荷陷阱存储器件不同原位保温情况下的平带电压偏移量。

图4:(ZrO2)0.2(SiO2)0.8/SiO2/(ZrO2)0.2(SiO2)0.8基双层氧化物纳米晶电荷陷阱存储器件的数据保持性能。

具体实施方式

实施例1:具有双层氧化物纳米晶存储层的电荷陷阱存储器件的制备过程如下:(原位保温温度和时间为800℃,15分钟,600℃,1分钟)

a)将经过氢氟酸清洗的Si衬底材料,放置在脉冲激光沉积系统衬底台上,将SiO2、(ZrO2)0.2(SiO2)0.8和铂(Pt)靶材置于靶材底盘上,腔内压强为1×10-4Pa;

b)利用脉冲激光沉积系统在SiO2隧穿层表面生长第一层5nm的(ZrO2)0.2(SiO2)0.8薄膜,然后将衬底台温度由室温升高到800℃,使具有低结晶温度的ZrO2从Mx(SiO2)1-x薄膜母相中析出,并原位保温15分钟,使晶粒有充足的时间粗化、长大,紧接着在第一层(ZrO2)0.2(SiO2)0.8薄膜表面沉积层间介质SiO2薄膜,厚度为1nm,然后降低衬底台温度到600℃,接下来在层间介质SiO2表面沉积第二层(ZrO2)0.2(SiO2)0.8薄膜,厚度与第一层相同,原位保温1分钟,而后降低衬底台温度到室温;

c)利用脉冲激光沉积系统在存储层表面沉积一层厚度为20nm的SiO2作为阻挡层;

d)利用脉冲激光沉积系统在SiO2阻挡层表面沉积一层200nm>

实施例2:具有双层氧化物纳米晶存储层的电荷陷阱存储器件的制备过程如下:(原位保温温度和时间为800℃,15分钟)

a)将经过氢氟酸清洗的Si衬底材料,放置在脉冲激光沉积系统衬底台上,将SiO2、(ZrO2)0.2(SiO2)0.8和铂(Pt)靶材置于靶材底盘上,腔内压强为1×10-4Pa;

b)利用脉冲激光沉积系统在SiO2隧穿层表面生长第一层5nm的(ZrO2)0.2(SiO2)0.8薄膜,紧接着在第一层(ZrO2)0.2(SiO2)0.8薄膜表面沉积层间介质SiO2薄膜,厚度为1nm,接下来在层间介质SiO2表面沉积第二层(ZrO2)0.2(SiO2)0.8薄膜,厚度与第一层相同,然后将衬底台温度由室温升高到800℃,原位保温15分钟,而后降低衬底台温度到室温;

c)利用脉冲激光沉积系统在存储层表面沉积一层厚度为20nm的SiO2作为阻挡层;

d)利用脉冲激光沉积方法在SiO2阻挡层表面沉积一层200nm>

实施例3:具有双层氧化物纳米晶存储层的电荷陷阱存储器件的制备过程如下:(原位保温温度和时间为600℃,1分钟)

a)将经过氢氟酸清洗的Si衬底材料,放置在脉冲激光沉积系统衬底台上,将SiO2、(ZrO2)0.2(SiO2)0.8和铂(Pt)靶材置于靶材底盘上,腔内压强为1×10-4Pa;

b)利用脉冲激光沉积系统在SiO2隧穿层表面生长第一层5nm的(ZrO2)0.2(SiO2)0.8薄膜,紧接着在第一层(ZrO2)0.2(SiO2)0.8薄膜表面沉积层间介质SiO2薄膜,厚度为1nm,接下来在层间介质SiO2表面沉积第二层(ZrO2)0.2(SiO2)0.8薄膜,厚度与第一层相同,然后将衬底台温度由室温升高到600℃,原位保温1分钟,而后降低衬底台温度到室温;

c)利用脉冲激光沉积系统在存储层表面沉积一层厚度为20nm的SiO2作为阻挡层;

d)利用脉冲激光沉积方法在SiO2阻挡层表面沉积一层200nm>

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号