首页> 外文期刊>Concurrency and computation: practice and experience >Fast dynamic routing based on weighted kernel density estimation
【24h】

Fast dynamic routing based on weighted kernel density estimation

机译:基于加权核密度估计的快速动态路由

获取原文
获取原文并翻译 | 示例

摘要

Capsules as well as dynamic routing between them are most recently proposed structures for deep neural networks. A capsule groups data into vectors or matrices as poses rather than conventional scalars to represent specific properties of target instance. Based on pose, a capsule should be attached to a probability (often denoted as activation) for its presence. The dynamic routing helps capsule network achieve more generalization capacity with fewer model parameters. However, the bottleneck, which prevents widespread applications of capsule, is the expense of computation during routing. To address this problem, we generalize existing routing methods within the framework of weighted kernel density estimation, proposing two fast routing methods with different optimization strategies. Our methods prompt the time efficiency of routing by nearly 40% with negligible performance degradation. By stacking a hybrid of convolutional layers and capsule layers, we construct a network architecture to handle inputs at a resolution of 64 x 64 pixels. The proposed models achieve a parallel performance with other leading methods in multiple benchmarks.
机译:胶囊以及它们之间的动态路由是深度神经网络的最近建议的结构。胶囊将数据作为姿势或矩阵作为姿势而不是传统标量,以表示目标实例的特定属性。基于姿势,胶囊应附着在其存在的概率(通常表示为激活)。动态路由可帮助胶囊网络通过更少的模型参数实现更多的概括容量。然而,防止胶囊广泛应用的瓶颈是在路由期间计算的费用。为了解决这个问题,我们概括了加权内核密度估计框架内的现有路由方法,提出了具有不同优化策略的两个快速路由方法。我们的方法促使路由的时间效率近40%,性能下降可忽略不计。通过堆叠卷积层和胶囊层的混合,我们构建网络架构以处理64×64像素的分辨率的输入。所提出的模型在多个基准中实现了具有其他领导方法的并行性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号