首页> 外文期刊>Computers & mathematics with applications >Non-recursive estimation using a batch filter based on particle filtering
【24h】

Non-recursive estimation using a batch filter based on particle filtering

机译:使用基于粒子滤波的批处理滤波器进行非递归估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a non-recursive estimation algorithm using a batch filter based on particle filtering is developed and demonstrated for a one-dimensional nonlinear example. Algorithms of a batch filter based on unscented transformation are also briefly reviewed. To verify the performance of the presented batch filter based on particle filtering, numerical simulations and accuracy assessments are conducted, and the results are compared with those of batch filter based on unscented transformation under various nonlinear and non-Gaussian environments. The root mean square value of differences between observed states and computed states after convergence is used to check the precision of the filtering process. The estimated initial state value and its difference from the true initial state value are used to verify the state accuracy of the nonlinear estimation. The large initial state error is used for the nonlinear environment, and five types of simulated measurement noise are used for the non-Gaussian environments. Under conditions of large initial state error or large non-Gaussian measurement noise, the non-recursive estimation algorithm developed in this paper yields more robust and accurate estimation results than the batch filter based on unscented transformation. In addition, sensitivity analysis of estimation parameters is performed for effective nonlinear estimation, and this shows that the developed non-recursive estimation algorithm does not require the heavy scaling parameter tuning which is required for batch filter based on unscented transformation. For the consideration of computational burden, the complexity analysis is also performed. Therefore, we conclude that the non-recursive batch filter based on particle filtering is effectively applicable to batch estimation problems under nonlinear and non-Gaussian environments.
机译:在本文中,针对一维非线性实例,开发了一种使用基于粒子滤波的批处理滤波器的非递归估计算法,并对其进行了演示。还简要回顾了基于无味变换的批处理过滤器算法。为了验证所提出的基于粒子滤波的批量过滤器的性能,进行了数值模拟和精度评估,并将结果与​​在各种非线性和非高斯环境下基于无味变换的批量过滤器进行了比较。收敛后,观测状态和计算状态之间的差的均方根值用于检查滤波过程的精度。估计的初始状态值及其与真实初始状态值的差用于验证非线性估计的状态精度。大的初始状态误差用于非线性环境,五种模拟的测量噪声用于非高斯环境。在初始状态误差较大或非高斯测量噪声较大的情况下,与基于无味变换的批处理滤波器相比,本文开发的非递归估计算法产生的鲁棒性和准确性更高。另外,对估计参数进行敏感性分析以进行有效的非线性估计,这表明所开发的非递归估计算法不需要基于无味变换的批量过滤器所需的繁重缩放参数调整。考虑到计算负担,还执行了复杂度分析。因此,我们得出结论,基于粒子滤波的非递归批量过滤器可有效地应用于非线性和非高斯环境下的批量估计问题。

著录项

  • 来源
    《Computers & mathematics with applications》 |2013年第10期|1905-1919|共15页
  • 作者单位

    Astrodynamks and Control Laboratory, Department of Astronomy, Yonsei University, Seoul 120-749, Republic of Korea;

    Astrodynamks and Control Laboratory, Department of Astronomy, Yonsei University, Seoul 120-749, Republic of Korea;

    Astrodynamks and Control Laboratory, Department of Astronomy, Yonsei University, Seoul 120-749, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Non-recursive; Batch filter; Particle filtering;

    机译:非递归批次过滤器;粒子过滤;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号