首页> 外文期刊>Journal of Process Control >Particle filters for state and parameter estimation in batch processes
【24h】

Particle filters for state and parameter estimation in batch processes

机译:用于批处理中状态和参数估计的粒子滤波器

获取原文
获取原文并翻译 | 示例

摘要

In process engineering, on-line state and parameter estimation is a key component in the modelling of batch processes. However, when state and/or measurement functions are highly non-linear and the posterior probability of the state is non-Gaussian, conventional filters. such as the extended Kalman filter, do not provide satisfactory results. This paper proposes an alternative approach whereby particle filters based on the sequential Monte Carlo method are used for the estimation task. Particle filters are initially described prior to discussing some implementation issues, including degeneracy, the selection of the importance density and the number of particles. A kernel smoothing approach is introduced for the robust estimation of unknown and time-varying model parameters. The effectiveness of particle filters is demonstrated through application to a benchmark batch polymerization process and the results are compared with the extended Kalman filter. (c) 2005 Elsevier Ltd. All rights reserved.
机译:在过程工程中,在线状态和参数估计是批过程建模中的关键组成部分。然而,当状态和/或测量函数是高度非线性的并且状态的后验概率是非高斯的时,常规滤波器。例如扩展的卡尔曼滤波器,无法提供令人满意的结果。本文提出了一种替代方法,该方法将基于顺序蒙特卡洛方法的粒子滤波器用于估计任务。首先在讨论一些实现问题之前描述粒子过滤器,这些问题包括退化,粒子的重要性密度和数量的选择。引入了一种内核平滑方法,用于未知和时变模型参数的鲁棒估计。通过将其应用于基准间歇式聚合工艺,证明了颗粒过滤器的有效性,并将结果与​​扩展的卡尔曼过滤器进行了比较。 (c)2005 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号