首页> 外文期刊>Computers & mathematics with applications >Neural Networks Based Approach for Computing Eigenvectors and Eigenvalues of Symmetric Matrix
【24h】

Neural Networks Based Approach for Computing Eigenvectors and Eigenvalues of Symmetric Matrix

机译:基于神经网络的对称矩阵特征向量和特征值计算方法

获取原文
获取原文并翻译 | 示例

摘要

Efficient computation of eigenvectors and eigenvalues of a matrix is an important problem in engineering, especially for computing eigenvectors corresponding to largest or smallest eigenvalues of a matrix. This paper proposes a neural network based approach to compute eigenvectors corresponding to the largest or smallest eigenvalues of any real symmetric matrix. The proposed network model is described by differential equations, which is a class of continuous time recurrent neural network model. It has parallel processing ability in an asynchronous manner and can achieve high computing performance. This paper provides a clear mathematical understanding of the network dynamic behaviors relating to the computation of eigenvectors and eigenvalues. Computer simulation results show the computational capability of the network model.
机译:有效计算矩阵的特征向量和特征值是工程中的重要问题,尤其是对于计算与矩阵的最大或最小特征值相对应的特征向量而言。本文提出了一种基于神经网络的方法来计算与任何实对称矩阵的最大或最小特征值相对应的特征向量。所提出的网络模型由微分方程描述,它是一类连续时间递归神经网络模型。它具有异步方式的并行处理能力,并可以实现较高的计算性能。本文对与特征向量和特征值的计算有关的网络动态行为提供了清晰的数学理解。计算机仿真结果表明了该网络模型的计算能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号