首页> 外文期刊>Neurocomputing >A functional neural network for computing the largest modulus eigenvalues and their corresponding eigenvectors of an anti-symmetric matrix
【24h】

A functional neural network for computing the largest modulus eigenvalues and their corresponding eigenvectors of an anti-symmetric matrix

机译:一个功能神经网络,用于计算反对称矩阵的最大模量特征值及其对应的特征向量

获取原文
获取原文并翻译 | 示例

摘要

Efficient computation of the largest modulus eigenvalues of a real anti-symmetric matrix is a very important problem in engineering. Using a neural network to complete these operations is in an asynchronous manner and can achieve high performance. This paper proposes a functional neural network (FNN) that can be transformed into a complex differential equation to do this work. Firstly, the mathematical analytic solution of the equation is received, and then the convergence properties of this FNN are analyzed. The simulation result indicates that with general initial complex values, the network will converge to the complex eigenvector corresponding to the eigenvalue whose imaginary part is positive, and modulus is the largest of all eigenvalues. Comparing with other neural networks used for computing eigenvalues and eigenvectors, this network is adaptive to real anti-symmetric matrices for completing these operations.
机译:实际的反对称矩阵的最大模量特征值的有效计算是工程中非常重要的问题。使用神经网络以异步方式完成这些操作并可以实现高性能。本文提出了一种功能神经网络(FNN),可以将其转换为复杂的微分方程来完成这项工作。首先接收方程的数学解析解,然后分析该神经网络的收敛性。仿真结果表明,在一般初始复数值的情况下,网络将收敛到与虚部为正的本征值对应的复本征向量,并且模量是所有本征值中最大的。与用于计算特征值和特征向量的其他神经网络相比,该网络适用于实数反对称矩阵以完成这些操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号