首页> 外文期刊>Neurocomputing >A simple functional neural network for computing the largest and smallest eigenvalues and corresponding eigenvectors of a real symmetric matrix
【24h】

A simple functional neural network for computing the largest and smallest eigenvalues and corresponding eigenvectors of a real symmetric matrix

机译:一个简单的函数神经网络,用于计算实对称矩阵的最大和最小特征值以及相应的特征向量

获取原文
获取原文并翻译 | 示例

摘要

Efficient computation of the largest eigenvalue and the smallest eigenvalue of a real symmetric matrix is a very important problem in engineering. Using neural networks to complete these operations is in an asynchronous manner and can achieve high performance. This paper proposes a concise functional neural network (FNN) expressed as a differential equation and designs steps to do this work. Firstly, the mathematical analytic solution of the equation is received, and then the convergence properties of this FNN are fully gained. Finally, the computing steps are designed in detail. The proposed method can compute the smallest eigenvalue and the largest eigenvalue whether the matrix is non-definite, positive definite or negative definite. Compared with other methods based on neural networks, this FNN is very simple and concise, so it is very easy to realize.
机译:实对称矩阵的最大特征值和最小特征值的有效计算是工程中非常重要的问题。使用神经网络以异步方式完成这些操作并可以实现高性能。本文提出了一个表示为微分方程的简明功能神经网络(FNN),并设计了完成此工作的步骤。首先接收方程的数学解析解,然后充分获得该神经网络的收敛性。最后,详细设计了计算步骤。无论矩阵是不确定的,正定的还是负定的,所提出的方法都可以计算最小特征值和最大特征值。与其他基于神经网络的方法相比,该FNN非常简单明了,因此很容易实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号