首页> 外文期刊>Computers & mathematics with applications >Error analysis of variable stepsize Runge-Kutta methods for a class of multiply-stiff singular perturbation problems
【24h】

Error analysis of variable stepsize Runge-Kutta methods for a class of multiply-stiff singular perturbation problems

机译:一类多重刚性奇异摄动问题的变步长Runge-Kutta方法的误差分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present some results on the error behavior of variable stepsize stiffly-accurate Runge-Kutta methods applied to a class of multiply-stiff initial value problems of ordinary differential equations in singular perturbation form, under some weak assumptions on the coefficients of the considered methods. It is shown that the obtained convergence results hold for stiffly-accurate Runge-Kutta methods which are not algebraically stable or diagonally stable. Some results on the existence and uniqueness of the solution of Runge-Kutta equations are also presented.
机译:在本文中,我们给出了一些关于变量系数的弱假设,并将这些变量应用于具有奇异摄动形式的常微分方程的一类多重刚度初值问题的变步长刚性精确Runge-Kutta方法的误差结果。考虑的方法。结果表明,所获得的收敛结果适用于非代数稳定或对角线稳定的刚度精确的Runge-Kutta方法。还给出了有关Runge-Kutta方程解的存在性和唯一性的一些结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号