首页> 外文期刊>Communications in Statistics >Mean shift and influence measures in linear measurement error models with stochastic linear restrictions
【24h】

Mean shift and influence measures in linear measurement error models with stochastic linear restrictions

机译:具有随机线性约束的线性测量误差模型中的均值漂移和影响度量

获取原文
获取原文并翻译 | 示例

摘要

We present influence diagnostics for linear measurement error models with stochastic linear restrictions using the corrected likelihood of Nakamura in 1990. The case deletion and mean shift outlier models are developed to identify outlying and influential observations. We derive a corrected score test statistic for outlier detection based on mean shift outlier models. The analogs of Cook's distance and likelihood distance are proposed to determine influential observations based on case deletion models. A parametric bootstrap procedure is used to obtain empirical distributions of the test statistics and a simulation study has been used to evaluate the performance of the proposed estimators based on the mean squares error criterion and the score test statistic. Finally, a numerical example is given to illustrate the theoretical results.
机译:我们使用中村在1990年提出的校正后的可能性,提出了具有随机线性限制的线性测量误差模型的影响诊断。案例删除和均值离群值异常模型的开发是为了识别异常和有影响的观察结果。我们基于均值漂移离群值模型得出用于离群值检测的校正分数测试统计量。提出了库克距离和似然距离的类似物,以基于案例删除模型确定有影响的观察结果。使用参数自举程序获取测试统计量的经验分布,并使用仿真研究基于均方误差标准和得分测试统计量来评估所提出的估计量的性能。最后,通过数值例子说明了理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号