首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Blind Omnidirectional Image Quality Assessment With Viewport Oriented Graph Convolutional Networks
【24h】

Blind Omnidirectional Image Quality Assessment With Viewport Oriented Graph Convolutional Networks

机译:盲人全向图像质量评估与视口导向图卷积网络

获取原文
获取原文并翻译 | 示例

摘要

Quality assessment of omnidirectional images has become increasingly urgent due to the rapid growth of virtual reality applications. Different from traditional 2D images and videos, omnidirectional contents can provide consumers with freely changeable viewports and a larger field of view covering the 360 degrees x 180 degrees spherical surface, which makes the objective quality assessment of omnidirectional images more challenging. In this paper, motivated by the characteristics of the human vision system (HVS) and the viewing process of omnidirectional contents, we propose a novel Viewport oriented Graph Convolution Network (VGCN) for blind omnidirectional image quality assessment (IQA). Generally, observers tend to give the subjective rating of a 360-degree image after passing and aggregating different viewports information when browsing the spherical scenery. Therefore, in order to model the mutual dependency of viewports in the omnidirectional image, we build a spatial viewport graph. Specifically, the graph nodes are first defined with selected viewports with higher probabilities to be seen, which is inspired by the HVS that human beings are more sensitive to structural information. Then, these nodes are connected by spatial relations to capture interactions among them. Finally, reasoning on the proposed graph is performed via graph convolutional networks. Moreover, we simultaneously obtain global quality using the entire omnidirectional image without viewport sampling to boost the performance according to the viewing experience. Experimental results demonstrate that our proposed model outperforms state-of-the-art full-reference and no-reference IQA metrics on two public omnidirectional IQA databases.
机译:由于虚拟现实应用的快速增长,全向图像对全向图像的质量评估变得越来越紧迫。不同于传统的2D图像和视频,全向内容可以为消费者提供可自由变革的视口和覆盖360度x 180度球形表面的更大视野,这使得全向图像的客观质量评估更具挑战性。在本文中,通过人体视觉系统(HVS)的特征和全向内容的观看过程的动机,我们提出了一种新颖的视图导向图卷积网络(VGCN),用于盲目全向图像质量评估(IQA)。通常,观察者在通过并且在浏览球面风景时通过和聚合不同视口信息后,观察者倾向于给出360度图像的主观评级。因此,为了模拟视口在全向图像中的相互依赖性,我们构建了一个空间视口图。具体地,曲线节点首先使用具有更高概率的选定视口定义,这些视口是由人类对结构信息更敏感的HV的启发。然后,这些节点通过空间关系连接以捕获它们之间的交互。最后,通过图形卷积网络执行所提出的图表的推理。此外,我们同时使用整个全向图像获得全局质量,而无需观点采样以根据观看体验提高性能。实验结果表明,我们所提出的模型在两个公共全向IQA数据库上占据了最先进的全引用和无引用IQA指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号