首页> 外文期刊>IEEE Transactions on Image Processing >Two-Stream Convolutional Networks for Blind Image Quality Assessment
【24h】

Two-Stream Convolutional Networks for Blind Image Quality Assessment

机译:两流卷积网络用于盲图像质量评估

获取原文
获取原文并翻译 | 示例

摘要

Traditional image quality assessment (IQA) methods do not perform robustly due to the shallow hand-designed features. It has been demonstrated that deep neural network can learn more effective features than ever. In this paper, we describe a new deep neural network to predict the image quality accurately without relying on the reference image. To learn more effective feature representations for non-reference IQA, we propose a two-stream convolution network that includes two subcomponents for image and gradient image. The motivation for this design is using a two-stream scheme to capture different-level information of inputs and easing the difficulty of extracting features from one steam. The gradient stream focuses on extracting structure features in details, and the image stream pays more attention to the information in intensity. In addition, to consider the locally non-uniform distribution of distortion in images, we add a region-based fully convolutional layer for using the information around the center of the input image patch. The final score of the overall image is calculated by averaging of the patch scores. The proposed network performs in an end-to-end manner in both the training and testing phases. The experimental results on a series of benchmark datasets, e.g., LIVE, CISQ, IVC, TID2013, and Waterloo Exploration Database, show that the proposed algorithm outperforms the state-of-the-art methods, which verifies the effectiveness of our network architecture.
机译:由于浅浅的手工设计功能,传统的图像质量评估(IQA)方法无法很好地执行。已经证明,深度神经网络可以比以往学习更多有效的功能。在本文中,我们描述了一种新的深度神经网络,可以在不依赖参考图像的情况下准确地预测图像质量。为了学习非参考IQA的更有效的特征表示,我们提出了一种两流卷积网络,该网络包括两个用于图像和梯度图像的子组件。该设计的动机是使用两流方案来捕获输入的不同级别的信息,并减轻了从一个蒸汽中提取特征的难度。梯度流侧重于细节的结构特征提取,而图像流则更加关注强度信息。此外,要考虑图像中失真的局部不均匀分布,我们添加了一个基于区域的全卷积层,以使用输入图像块中心附近的信息。整个图像的最终分数是通过对补丁分数进行平均计算得出的。拟议的网络在培训和测试阶段均以端到端的方式执行。在LIVE,CISQ,IVC,TID2013和Waterloo Exploration数据库等一系列基准数据集上的实验结果表明,该算法优于最新方法,证明了我们网络体系结构的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号