首页> 外文期刊>IEEE transactions on automation science and engineering >Learning Physical Human–Robot Interaction With Coupled Cooperative Primitives for a Lower Exoskeleton
【24h】

Learning Physical Human–Robot Interaction With Coupled Cooperative Primitives for a Lower Exoskeleton

机译:学习人机交互与协作原语耦合的下外骨骼

获取原文
获取原文并翻译 | 示例

摘要

Human-powered lower exoskeletons have received considerable interests from both academia and industry over the past decades, and encountered increasing applications in human locomotion assistance and strength augmentation. One of the most important aspects in those applications is to achieve robust control of lower exoskeletons, which, in the first place, requires the proactive modeling of human movement trajectories through physical human-robot interaction (pHRI). As a powerful representative tool for motion trajectories, dynamic movement primitives (DMP) have been used to model human movement trajectories. However, canonical DMP only offers a general representation of human movement trajectory and may neglects the interactive term, therefore it cannot be directly applied to lower exoskeletons which need to track human joint trajectories online, because different pilots have different trajectories and even same pilot might change his/her motion during walking. This paper presents a novel coupled cooperative primitive (CCP) strategy, which aims at modeling the motion trajectories online. Besides maintaining canonical motion primitives, we model the interaction term between the pilot and exoskeletons through impedance models, and propose a reinforcement learning method based on policy improvement and path integrals (PI2) to learn the parameters online. Experimental results on both a single degree-of-freedom platform and a HUman-powered Augmentation Note to Practitioners - This paper was motivated by the problem of lower exoskeleton when it interacts with different pilots. In both military and industrial applications of lower exoskeleton for strength augmentation, a most challenge problem is how to deal with the pHRI caused by different pilots. This paper suggests a new learning-based strategy, which modeled the pilot's motion with movement primitives and update through the pHRI between the pilot and the lower exoskeleton with online reinforcement learning method. In order to employ the proposed CCP into the real-time application, we also combine the CCP with a hierarchical control framework, and applied on a lower exoskeleton system which we built for strength augmentation application (which named as HUALEX). In the experiments of this paper, we validate the proposed CCP on different pilots with HUALEX system, the proposed CCP also achieve a good performance on the online learning and adaptation of the pilot's gait. In the future, we will extend this algorithm for adapting complex environment in both industrial and military applications, such as in different terrains, stairs, and slopes scenarios, and so on.
机译:在过去的几十年中,人力驱动的下骨骼受到了学术界和工业界的极大关注,并且在人体运动辅助和力量增强中得到了越来越多的应用。这些应用程序中最重要的方面之一是实现对下骨骼的鲁棒控制,这首先​​需要通过物理人机交互(pHRI)对人类运动轨迹进行主动建模。作为运动轨迹的有力代表工具,动态运动原语(DMP)已用于对人类运动轨迹进行建模。但是,规范的DMP仅提供了人体运动轨迹的一般表示,并且可能忽略了交互项,因此它不能直接应用于需要在线跟踪人体关节轨迹的下骨骼,因为不同的飞行员具有不同的轨迹,甚至同一位飞行员可能会改变他/她在行走过程中的动作。本文提出了一种新颖的耦合合作原语(CCP)策略,该策略旨在在线模拟运动轨迹。除了维护经典运动原语外,我们还通过阻抗模型对飞行员与外骨骼之间的相互作用项进行建模,并提出一种基于策略改进和路径积分(PI2)的强化学习方法以在线学习参数。在单自由度平台和人为操作者的增强增强注解上的实验结果-本文受下骨骼与不同飞行员互动时的问题的启发。在下外骨骼的军事和工业应用中,为了增强力量,最大的挑战是如何应对由不同飞行员引起的pHRI。本文提出了一种基于学习的新策略,该策略使用运动原语对飞行员的运动进行建模,并通过在线强化学习方法通​​过飞行员和下外骨骼之间的pHRI更新。为了将建议的CCP应用于实时应用程序,我们还将CCP与分层控制框架相结合,并应用于为增强功能而构建的下部外骨骼系统(称为HUALEX)。在本文的实验中,我们使用HUALEX系统验证了所提出的CCP在不同飞行员上的能力,所提出的CCP在在线学习和适应飞行员的步态方面也取得了良好的表现。将来,我们将扩展该算法,以适应工业和军事应用中的复杂环境,例如在不同的地形,楼梯和斜坡场景等情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号