首页> 外文期刊>Pattern recognition letters >Learning assistive strategies for exoskeleton robots from user-robot physical interaction
【24h】

Learning assistive strategies for exoskeleton robots from user-robot physical interaction

机译:从用户与机器人的物理交互中学习外骨骼机器人的辅助策略

获取原文
获取原文并翻译 | 示例

摘要

Social demand for exoskeleton robots that physically assist humans has been increasing in various situations due to the demographic trends of aging populations. With exoskeleton robots, an assistive strategy is a key ingredient. Since interactions between users and exoskeleton robots are bidirectional, the assistive strategy design problem is complex and challenging. In this paper, we explore a data-driven learning approach for designing assistive strategies for exoskeletons from user-robot physical interaction. We formulate the learning problem of assistive strategies as a policy search problem and exploit a data-efficient model-based reinforcement learning framework. Instead of explicitly providing the desired trajectories in the cost function, our cost function only considers the user's muscular effort measured by electromyography signals (EMGs) to learn the assistive strategies. The key underlying assumption is that the user is instructed to perform the task by his/her own intended movements. Since the EMGs are observed when the intended movements are achieved by the user's own muscle efforts rather than the robot's assistance, EMGs can be interpreted as the "cost" of the current assistance. We applied our method to a 1-DoF exoskeleton robot and conducted a series of experiments with human subjects. Our experimental results demonstrated that our method learned proper assistive strategies that explicitly considered the bidirectional interactions between a user and a robot with only 60 seconds of interaction. We also showed that our proposed method can cope with changes in both the robot dynamics and movement trajectories. (C) 2017 The Authors. Published by Elsevier B.V.
机译:由于人口老龄化的趋势,在各种情况下,对物理上辅助人类的外骨骼机器人的社会需求一直在增长。对于外骨骼机器人,辅助策略是关键要素。由于用户与外骨骼机器人之间的交互是双向的,因此辅助策略设计问题既复杂又具有挑战性。在本文中,我们探索了一种数据驱动的学习方法,用于通过用户与机器人的物理交互来设计外骨骼的辅助策略。我们将辅助策略的学习问题表述为策略搜索问题,并利用基于数据有效模型的强化学习框架。我们的成本函数没有考虑在成本函数中明确提供所需的轨迹,而是仅考虑通过肌电图信号(EMG)测量的用户的肌肉力量来学习辅助策略。关键的基本假设是通过用户自己的预期动作指示用户执行任务。由于当通过用户自己的肌肉力量而不是机器人的协助来实现预期的运动时才观察到EMG,因此EMG可以解释为当前协助的“成本”。我们将我们的方法应用于1-DoF外骨骼机器人,并针对人类受试者进行了一系列实验。我们的实验结果表明,我们的方法学习了正确的辅助策略,该策略明确考虑了用户和机器人之间的双向交互(交互时间仅为60秒)。我们还表明,我们提出的方法可以应对机器人动力学和运动轨迹的变化。 (C)2017作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号