首页> 外文期刊>Automatic Control, IEEE Transactions on >On the Covariance Completion Problem Under a Circulant Structure
【24h】

On the Covariance Completion Problem Under a Circulant Structure

机译:循环结构下的协方差补全问题

获取原文
获取原文并翻译 | 示例

摘要

Covariance matrices with a circulant structure arise in the context of discrete-time periodic processes and their significance stems also partly from the fact that they can be diagonalized via a Fourier transformation. This note deals with the problem of completion of partially specified circulant covariance matrices. The particular completion that has maximal determinant (i.e., the so-called maximum entropy completion) was considered in Carli where it was shown that if a single band is unspecified and to be completed, the algebraic restriction that enforces the circulant structure is automatically satisfied and that the inverse of the maximizer has a band of zero values that corresponds to the unspecified band in the data, i.e., it has the Dempster property. The purpose of the present note is to develop an independent proof of this result which in fact extends naturally to any number of missing bands as well as arbitrary missing elements. More specifically, we show that this general fact is a direct consequence of the invariance of the determinant under the group of transformations that leave circulant matrices invariant. A description of the complete set of all positive extensions of partially specified circulant matrices is also given and certain connections between such sets and the factorization of certain polynomials in many variables, facilitated by the circulant structure, is highlighted.
机译:具有循环结构的协方差矩阵出现在离散时间周期过程的上下文中,其重要性还部分地取决于它们可以通过傅立叶变换对角化的事实。本说明涉及部分指定的循环协方差矩阵的完成问题。在Carli中考虑了具有最大行列式的特定完成(即所谓的最大熵完成),其中表明,如果未指定单个波段并要完成,则自动满足强制循环结构的代数限制,并且最大化器的逆具有一个零值带,它对应于数据中未指定的带,即具有Dempster属性。本说明的目的是为该结果提供独立的证明,实际上可以自然地扩展到任何数量的缺失带以及任意缺失元素。更具体地说,我们表明,这一一般事实是行列式不变的直接结果,在该组转换中,循环矩阵保持不变。还给出了对部分规定的循环矩阵的所有正扩展的完整集的描述,并着重指出了这些集合之间的某些联系以及在循环变量结构的帮助下许多变量中某些多项式的因式分解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号