首页> 外文学位 >Classification of data under autoregressive circulant covariance structure with comparisons to compound symmetric covariance structure.
【24h】

Classification of data under autoregressive circulant covariance structure with comparisons to compound symmetric covariance structure.

机译:自回归循环协方差结构下的数据分类,并与复合对称协方差结构进行比较。

获取原文
获取原文并翻译 | 示例

摘要

The problem of classification is an old one that has application in biomedical, environmental, geophysical, medical, signal processing and in many other fields. There are numerous approaches to this problem using the statistical properties of the populations from which observations are drawn. In applications such as geophysical and signals processing there is a natural structure on the variance-covariance matrix of the observation vectors. The efficacy of classification is generally increased by taking that structure into account. One such structure that is used to model that variance-covariance matrix is the autoregressive circulant (ARC) structure. Classification rules have been developed for data that have an ARC covariance structure. The effectiveness of these rules has been shown by simulating data sets that have such ARC structure and comparing the error rates by using the rule that assumes an ARC structure, a compound symmetric (CS) structure and no structure. The results of these simulations show that the rule based on the correct structure has the lowest error rate and the rule based on the simple CS structure, in some cases, has a higher error rate than the rule based on no structure assumption.
机译:分类问题是一个古老的问题,已应用于生物医学,环境,地球物理,医学,信号处理以及许多其他领域。有许多方法可以利用从中得出观察结果的总体统计特性来解决此问题。在诸如地球物理和信号处理之类的应用中,观测矢量的方差-协方差矩阵上具有自然结构。通常通过考虑该结构来提高分类的效率。一种用于建模方差-协方差矩阵的结构是自回归循环(ARC)结构。已经为具有ARC协方差结构的数据开发了分类规则。通过模拟具有此类ARC结构的数据集并使用假定ARC结构,复合对称(CS)结构且没有结构的规则比较错误率,已显示了这些规则的有效性。这些仿真结果表明,基于正确结构的规则的错误率最低,而基于简单CS结构的规则在某些情况下的错误率要高于没有结构假设的规则。

著录项

  • 作者

    Louden, Christopher.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Statistics.
  • 学位 M.S.
  • 年度 2008
  • 页码 80 p.
  • 总页数 80
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号